A New Algorithm to Compute the Distance Between Multi-dimensional Histograms

  • Francesc Serratosa
  • Gerard Sanromà
  • Alberto Sanfeliu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

The aim of this paper is to present a new algorithm to compute the distance between n-dimensional histograms. There are some domains such as pattern recognition or image retrieval that use the distance between histograms at some step of the classification process. For this reason, some algorithms that find the distance between histograms have been proposed in the literature. Nevertheless, most of this research has been applied on one-dimensional histograms due to the computation of a distance between multi-dimensional histograms is very expensive. In this paper, we present an efficient method to compare multi-dimensional histograms in O(z 2 ), where z represents the number of bins.

Keywords

Multi-dimensional Histogram distance Earth Movers Distance Second-Order Random Graphs 

References

  1. 1.
    Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35, 1355–1370 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A Metric for Distributions with Applications to Image Databases. International Journal of Computer Vision 40(2), 99–121 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Numerical Recipes in C: The Art of Scientific Computing, ISBN 0-521-43108-5. Google Scholar
  4. 4.
    Russell, E.J.: Extension of Dantzig’s algorithm to finding an initial near-optimal basis for the transportation problem. Operations Research (17), 187–191 (1969)MATHCrossRefGoogle Scholar
  5. 5.
    Serratosa, F., Sanfeliu, A.: Signatures versus Histograms: Definitions, Distances and Algorithms. Pattern Recognition 39(5), 921–934 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Jou, F.-D., Fan, K.-C., Chang, Y.-L.: Efficient matching of large-size histograms. Pattern Recognition Letters 25, 277–286 (2004)CrossRefGoogle Scholar
  7. 7.
    Swain, M.J., Ballard, D.H.: Indexing via colour histograms. Int. J. Computer Vision (7), 11–32 (1991)CrossRefGoogle Scholar
  8. 8.
    Kolesnik, M., Fexa, A.: Multi-dimensional colour Histograms for Segmentation of Wounds in Images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 1014–1022. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chapelle, O., Haffner, P., Vapnik, V.N.: Support Vector Machines for Histogram-Based Image Classification. IEEE Trans. On Neural Net. (10) (1999)Google Scholar
  10. 10.
    Gong, Y., Chuan, C.H., Xiaoyi, G.: Image indexing and retrieval based on colour histograms. Multimedia Tools and Applications 2(2), 133–156 (1996)Google Scholar
  11. 11.
    Serratosa, F., Sanromà, G.: An Efficient Distance between Multi-dimensional Histograms for Comparing images. In: SSPR 2006. LNCS (2006)Google Scholar
  12. 12.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-Described Graphs for modeling objects represented by attributed graphs. Pattern Recognition 36(3), 781–798 (2003)CrossRefGoogle Scholar
  13. 13.
    Sanfeliu, A., Serratosa, F., Alquézar, R.: Second-Order Random Graphs for modeling sets of Attributed Graphs and their application to object learning and recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 375–396 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Francesc Serratosa
    • 1
  • Gerard Sanromà
    • 1
  • Alberto Sanfeliu
    • 2
  1. 1.Universitat Rovira i VirgiliSpain
  2. 2.Universitat Politècnica de CatalunyaSpain

Personalised recommendations