Proof Explanation for the Semantic Web Using Defeasible Logic

  • Grigoris Antoniou
  • Antonis Bikakis
  • Nikos Dimaresis
  • Manolis Genetzakis
  • Giannis Georgalis
  • Guido Governatori
  • Efie Karouzaki
  • Nikolas Kazepis
  • Dimitris Kosmadakis
  • Manolis Kritsotakis
  • Giannis Lilis
  • Antonis Papadogiannakis
  • Panagiotis Pediaditis
  • Constantinos Terzakis
  • Rena Theodosaki
  • Dimitris Zeginis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4798)

Abstract

In this work we present the design and implementation of a system for proof explanation in the Semantic Web, based on defeasible reasoning. Trust is a vital feature for Semantic Web. If users (humans and agents) are to use and integrate system answers, they must trust them. Thus, systems should be able to explain their actions, sources, and beliefs. Our system produces automatically proof explanations using a popular logic programming system (XSB), by interpreting the output from the proof’s trace and converting it into a meaningful representation. It also supports an XML representation (a RuleML language extension) for agent communication, which is a common scenario in the Semantic Web. The system in essence implements a proof layer for nonmonotonic rules on the Semantic Web.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: WWW, pp. 48–57 (2003)Google Scholar
  2. 2.
    Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104(1-2), 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. WSJ 3(1), 41–60 (2005)Google Scholar
  4. 4.
    Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Language for the Semantic Web. In: International Semantic Web Conference, pp. 364–378 (2002)Google Scholar
  5. 5.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL Rules Language. In: WWW 2004: Proceedings of the 13th international conference on World Wide Web, pp. 723–731. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    RuleML: The RuleML Initiative website (2006), http://www.ruleml.org/
  7. 7.
    Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with Rules and Ontologies on the Semantic Web. IEEE Transactions on Knowledge and Data Engineering (accepted for publication)Google Scholar
  8. 8.
    Bassiliades, N., Antoniou, G., Vlahavas, I.P.: Dr-device: A defeasible logic system for the semantic web. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 134–148. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Grosof, B.N., Gandhe, M.D., Finin, T.W.: SweetJess: Translating DAMLRuleML to JESS. In: RuleML (2002)Google Scholar
  10. 10.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A System for Integrating Multiple Semantics in an Answer-Set Programming Framework. In: WLP, pp. 206–210 (2006)Google Scholar
  11. 11.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Grosof, B.N.: Prioritized conflict handing for logic programs. In: ILPS 1997: Proceedings of the 1997 international symposium on Logic programming, pp. 197–211. MIT Press, Cambridge, MA (1997)Google Scholar
  13. 13.
    Antoniou, G., Maher, M.J., Billington, D.: Defeasible logic versus logic programming without negation as failure. J. Log. Program 42(1), 47–57 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation semantics for defeasible logic. J. Log. and Comput. 14(5), 675–702 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into logic programming. Theory Pract. Log. Program. 6(6), 703–735 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning systems. International Journal on Artificial Intelligence Tools 10(4), 483–501 (2001)CrossRefGoogle Scholar
  17. 17.
    JADE: Java Agent Development Framework (2006), http://jade.tilab.com/
  18. 18.
    Barwise, J., Etchemendy, J.: The language of first-order logic. Center for the study of Language and Information (1993)Google Scholar
  19. 19.
    Shortliffe, E.: Computer-based medical consultations: MYCIN. American Elsevier, New York (1976)Google Scholar
  20. 20.
    Swartout, W., Paris, C., Moore, J.: Explanations in knowledge systems: Design for explainable expert systems. IEEE Expert: Intelligent Systems and Their Applications 06(3), 58–64 (1991)Google Scholar
  21. 21.
    McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. IJCAI (1), 816–821 (1995)Google Scholar
  22. 22.
    McGuinness, D.L., da Silva, P.P.: Explaining answers from the semantic web: the inference web approach. J. Web Sem. 1(4), 397–413 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Grigoris Antoniou
    • 1
  • Antonis Bikakis
    • 1
  • Nikos Dimaresis
    • 1
  • Manolis Genetzakis
    • 1
  • Giannis Georgalis
    • 1
  • Guido Governatori
    • 2
  • Efie Karouzaki
    • 1
  • Nikolas Kazepis
    • 1
  • Dimitris Kosmadakis
    • 1
  • Manolis Kritsotakis
    • 1
  • Giannis Lilis
    • 1
  • Antonis Papadogiannakis
    • 1
  • Panagiotis Pediaditis
    • 1
  • Constantinos Terzakis
    • 1
  • Rena Theodosaki
    • 1
  • Dimitris Zeginis
    • 1
  1. 1.Institute of Computer Science, FORTHGreece
  2. 2.School of ITEE, The University of QueenslandAustralia

Personalised recommendations