This chapter describes pre-analytical parameters, reagents, analytical settings, and post-analytical requirements needed to perform urine organic acid and acylglycine analysis by capillary gas chromatography/mass spectrometry (GC/MS) in the setting of a Clinical Biochemical Genetics laboratory.


Glutaric Acid Organic Acid Analysis Propionic Acidemia Methylmalonic Acidemia Organic Acidemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Dirbashi OY, Rashed MS, Brink HJ, Jakobs C, Filimban N, Al-Ahaidib LY, Jacob M, Al-Sayed MM, Al-Hassnan Z, Faqeih E (2006) Determination of succinylacetone in dried blood spots and liquid urine as a dansylhydrazone by liquid chromatography tandem mass spectrometry. J Chromatogr B 831:274–280CrossRefGoogle Scholar
  2. 2.
    American College of Medical Genetics Standards and Guidelines for Clinical Genetics Laboratories: Scholar
  3. 3.
    Auray-Blais C, Giguere R, Lemieux B (2003) Newborn urine screening programme in the province of Quebec: an update of 30 years' experience. J Inherit Metab Dis 26:393–402PubMedCrossRefGoogle Scholar
  4. 4.
    Baena B, Cifuentes A, Barbas C (2005) Analysis of carboxylic acids in biological fluids by capillary electrophoresis. Electrophoresis 26:2622–2636PubMedCrossRefGoogle Scholar
  5. 5.
    Bartlett K, Gompertz D (1974) The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med 10:15–23PubMedCrossRefGoogle Scholar
  6. 6.
    Bonafe L, Troxler H, Kuster T, Heizmann CW, Chamoles NA, Burlina AB, Blau N (2000) Evaluation of urinary acylglycines by electrospray tandem mass spectrometry in mitochondrial energy metabolism defects and organic acidurias. Mol Genet Metab 69:302–311PubMedCrossRefGoogle Scholar
  7. 7.
    Boulat O, Gradwohl M, Matos V, Guignard JP, Bachmann C (2002) Organic acids in the second morning urine in a healthy Swiss paediatric population. Clin Chem Lab Med 41:1642–1658CrossRefGoogle Scholar
  8. 8.
    CAP survey catalog web site: Scholar
  9. 9.
    Chalmers RA, Lawson AM (1982) Organic Acids in Man: Analytical Chemistry, Biochemistry and Diagnosis of the Organic Acidurias. Chapman and Hall, LondonGoogle Scholar
  10. 10.
    Garcia A, Barbas C (2003) Capillary electrophoresis for the determination of organic acidurias in body fluids: a review. Clin Chem Lab Med 41:755–761PubMedCrossRefGoogle Scholar
  11. 11.
    Giordano G, McMurray WJ, Previs SF, Welch RD, Rinaldo P (1990) Identification of 2-(2'-octenyl) succinic acid in urine. Rapid Commun Mass Spectrom 4:170–172PubMedCrossRefGoogle Scholar
  12. 12.
    Goodman SI, Markey SP (1981) Diagnosis of Organic Acidemias by Gas Chromatography-Mass Spectrometry. Alan R. Liss, New YorkGoogle Scholar
  13. 13.
    Guneral F, Bachmann C (1994) Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem 1994 40:862–866Google Scholar
  14. 14.
    Guth HJ, Zschiesche M, Panzig E, Rudolph PE, Jager B, Kraatz G (1999) Which organic acids does hemofiltrate contain in the presence of acute renal failure? Int J Artif Organs 22:805–810PubMedGoogle Scholar
  15. 15.
    Hoffman GF. Organic acid analysis. In: Blau N, Duran M, Blaskovics ME (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. Chapman Hall, London, pp 31–49Google Scholar
  16. 16.
    Hoffmann GF, von Kries R, Klose D, Lindner M, Schulze A, Muntau AC, Roschinger W, Liebl B, Mayatepek E, Roscher AA (2004) Frequencies of inherited organic acidurias and disorders of mitochondrial fatty acid transport and oxidation in Germany. Eur J Pediatr 163:76–80PubMedCrossRefGoogle Scholar
  17. 17.
    Hori D, Hasegawa Y, Kimura M, Yang Y, Verma IC, Yamaguchi S (2005) Clinical onset and prognosis of Asian children with organic acidemias, as detected by analysis of urinary organic acids using GC/MS, instead of mass screening. Brain Dev 27:39–45PubMedCrossRefGoogle Scholar
  18. 18.
    Kelley RI (1991) Octenylsuccinic aciduria in children fed protein-hydrolysate formulas containing modified cornstarch. Pediatr Res 30:564–569PubMedCrossRefGoogle Scholar
  19. 19.
    Kroll CA, Magera MJ, Helgeson JK, Matern D, Rinaldo P (2002) A liquid chromatography-tandem mass spectrometry method for the determination of 5-hydroxyindole-3-acetic acid in urine. Clin Chem 48:2049–2051PubMedGoogle Scholar
  20. 20.
    Kuhara T (2002) Diagnosis and monitoring of inborn errors of metabolism using urease-pretreatment of urine, isotope dilution, and gas chromatography-mass spectrometry. J Chromatogr B 781:497–517CrossRefGoogle Scholar
  21. 21.
    Kumps A, Duez P, Mardens Y (2002) Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem 48:708–717PubMedGoogle Scholar
  22. 22.
    Kumps A, Vamos E, Mardens Y, Abramowicz M, Genin J, Duez P (2004) Assessment of an electron-impact GC-MS method for organic acids and glycine conjugates in amniotic fluid. J Inherit Metab Dis 27:567–579PubMedCrossRefGoogle Scholar
  23. 23.
    Lehotay DC, Clarke JTR (1995) Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci 32:377–429PubMedCrossRefGoogle Scholar
  24. 24.
    Magera MJ, Helgeson JK, Matern D, Rinaldo P (2000) Methylmalonic acid measured in plasma and urine by stable-isotope dilution and electrospray tandem mass spectrometry. Clin Chem 46:1804–1810PubMedGoogle Scholar
  25. 25.
    Magera MJ, Thompson AL, Stoor AL, Helgeson JK, Matern D, Rinaldo P (2003) Determination of vanillylmandelic acid in urine by stable isotope dilution and electrospray tandem mass spectrometry. Clin Chem 49:825–826PubMedCrossRefGoogle Scholar
  26. 26.
    Ohie T, Fu X, Iga M, Kimura M, Yamaguchi S (2000) Gas chromatography-mass spectrometry with tert.-butyldimethylsilyl derivation: use of the simplified sample preparations and the automated data system to screen for organic acidemias. J Chromatogr B Biomed Sci Appl 746:63–73PubMedCrossRefGoogle Scholar
  27. 27.
    Pitt JJ, Eggington M, Kahler SG (2002) Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem 48:1970–1980PubMedGoogle Scholar
  28. 28.
    Rashed MS, Aboul-Enein HY, Al-Amoudi M, Jakob M, Al-Ahaideb LY, Abbad A, Shabib S, Al-Jishi E (2002) Chiral liquid chromatography tandem mass spectrometry in the determination of the configuration of glyceric acid in urine of patients with d-glyceric and l-glyceric acidurias. Biomed Chromatogr 16:191–198PubMedCrossRefGoogle Scholar
  29. 29.
    Rinaldo P, O'Shea JJ, Coates PM, Hale DE, Stanley CA, Tanaka K (1988) Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by Stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. N Engl J Med 319:1308–1313PubMedGoogle Scholar
  30. 30.
    Rinaldo P, Yoon HR, Yu C, Raymond K, Tiozzo C, Giordano G (1999) Sudden and unexpected neonatal death: a protocol for the postmortem diagnosis of fatty acid oxidation disorders. Semin Perinatol 23:204–210PubMedCrossRefGoogle Scholar
  31. 31.
    Rinaldo P, Coates PM, Vockley J (2005) In memoriam. Mol Genet Metab 86:335–336CrossRefGoogle Scholar
  32. 32.
    Rinaldo P, Hahn SH, Matern D (2005) Inborn errors of amino acid, organic acid, and fatty acid metabolism. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th edn. Saunders, St. Louis, Missouri, pp 2207–2247Google Scholar
  33. 33.
    Sewell AC, Bohles HJ (1991) 4-Hydroxycyclohexanecarboxylic acid: a rare compound in urinary organic acid analysis. Clin Chem 37:1301–1302PubMedGoogle Scholar
  34. 34.
    Sims CJ, Fujito DT, Burholt DR, Dadok J, Giles HR, Wilkinson DA (1993) Quantification of human amniotic fluid constituents by high resolution proton nuclear magnetic resonance (NMR) spectroscopy. Prenat Diagn 13:473–480PubMedCrossRefGoogle Scholar
  35. 35.
    Sweetman L (1991) Organic acid analysis. In: Hommes FA (ed) Techniques in Diagnostic Human Biochemical Genetics. Wiley-Liss, New York, pp 143–176Google Scholar
  36. 36.
    Tanaka K (1990) Isovaleric acidemia: personal history, clinical survey, and study of the molecular basis. Progr Clin Biol Res 321:273–290Google Scholar
  37. 37.
    Wajner M, Raymond K, Barschak A, Luft AP, Ferreira G, Domingues G, Chiochetta M, Sirtori L, Goulart L, Pulrolnik V, Pires R, Grillo E, Lohr A, Funayama C, Sanseverino MT, Longuercio-Leite JC, Coelho JC, Giugliani R, Regla-Vargas C (2002) Detection of organic acidemias in Brazil. Arch Med Res 33:581–585PubMedCrossRefGoogle Scholar
  38. 38.
    Wilcken B, Hammond JW, Howard N, Bohane T, Hocart C, Halpern B (1981) Hawkinsinuria: a dominantly inherited defect of tyrosine metabolism with severe effects in infancy. N Engl J Med 305:865–868PubMedGoogle Scholar
  39. 39.
    Yamaguchi S, Kimura M, Iga M, Fu XW, Ohie T, Yamamoto T (1999) Automated, simplified GC/MS data processing system for organic acidemia screening and its application. Southeast Asian J Trop Med Publ Health 30:174–180Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Piero Rinaldo
    • 1
  1. 1.Biochemical Genetics Laboratory – Hilton 360C, Division of Laboratory Genetics, Department of Laboratory Medicine and PathologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations