Acylcarnitines, Including In Vitro Loading Tests

  • Dietrich Matern


Acylcarnitine analysis for the diagnosis of organic acidemias and particularly of fatty acid oxidation (FAO) disorders plays an increasingly prominent role in all venues of clinical biochemical genetics: prenatal diagnosis, newborn screening, evaluation of symptomatic patients, and postmortem screening. Almost exclusively performed by tandem mass spectrometry (MS/MS), plasma/serum is the primary specimen type in diagnostic settings. Blood dried on filter paper is analyzed for newborn screening and together with bile in the postmortem evaluation of cases of sudden and unexpected death. Cell-free supernatant of amniotic fluid is used for the prenatal diagnosis of selected inborn errors of metabolism. Cultured fibroblasts or amniocytes can be probed with FAO substrates and carnitine. Cell cultures deficient of an FAO enzyme will accumulate specific acylcarnitine species when incubated with substrates such as palmitate, allowing for the diagnosis of FAO disorders and several organoacidopathies. Acylcarnitine analysis using stable isotope-labeled internal standards provides quantitative data for acylcarnitine species. However, to provide meaningful results to referring health care providers, it is critical to complement analytical proficiency with in-depth interpretation of results as is true for many other examples of complex metabolic profiles.


Newborn Screening Free Carnitine Propionic Acidemia Methylmalonic Acidemia Fatty Acid Oxidation Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bremer J (1983) Carnitine – metabolism and functions. Physiol Rev 63:1420–1480PubMedGoogle Scholar
  2. 2.
    Gulewitsch WI, Krimberg R (1905) Zur Kenntnis der Extraktivstoffe der Muskeln. II. Mitteilung. Ueber das Carnitin. Hoppe Seylers Z Physiol Chem 45:326–330Google Scholar
  3. 3.
    Tomita M, Sendju Y (1927) Über die Oxyaminverbindungen, welche die Biuretreaktion zeigen. III. Spaltung der gamma-Amino-beta-oxy-buttersäure in die optisch-aktiven Komponenten. Hoppe Seylers Z Physiol Chem 169:263–277Google Scholar
  4. 4.
    Carter HE, Bhattacharyya PK, Weidman KR, Fraenkel G (1952) Chemical studies on vitamin BT isolation and characterization as carnitine. Arch Biochem Biophys 38:405–416PubMedCrossRefGoogle Scholar
  5. 5.
    Bhattacharyya PK, Carter HE, Fraenkel G, Weidman KR (1952) The identity of vitamin BT with carnitine. Arch Biochem 35:241–242PubMedCrossRefGoogle Scholar
  6. 6.
    Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179:899–902PubMedCrossRefGoogle Scholar
  7. 7.
    DiMauro S, DiMauro PM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182:929–931PubMedCrossRefGoogle Scholar
  8. 8.
    Rinaldo P, Matern D, Bennett MJ (2002) Fatty Acid oxidation disorders. Annu Rev Physiol 64:477–502PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang J, Zhang W, Zou D, et a (2002) Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun 297:1033–1042PubMedCrossRefGoogle Scholar
  10. 10.
    Ensenauer R, He M, Willard JM, et al (2005) Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem 280:32309–32316PubMedCrossRefGoogle Scholar
  11. 11.
    Roe CR, Bohan TP (1982) L-carnitine therapy in propionicacidaemia. Lancet 1:1411–1412PubMedCrossRefGoogle Scholar
  12. 12.
    Roe CR, Hoppel CL, Stacey TE, Chalmers RA, Tracey BM, Millington DS (1983) Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920PubMedCrossRefGoogle Scholar
  13. 13.
    Chalmers RA, Roe CR, Stacey TE, Hoppel CL (1988) Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 18:1325–1328CrossRefGoogle Scholar
  14. 14.
    Millington DS, Roe CR, Maltby DA (1984) Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom 11:236–241PubMedCrossRefGoogle Scholar
  15. 15.
    Roe CR, Millington DS, Maltby DA, Kahler SG, Bohan TP (1984) L-carnitine therapy in isovaleric acidemia. J Clin Invest 74:2290–2295PubMedCrossRefGoogle Scholar
  16. 16.
    Roe CR, Millington DS, Maltby DA, Bohan TP, Hoppel CL (1984) L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest 73:1785–1788PubMedCrossRefGoogle Scholar
  17. 17.
    Millington DS, Terada N, Chace DH, et al (1992) The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res 375:339–354PubMedGoogle Scholar
  18. 18.
    Pitt JJ, Eggington M, Kahler SG (2002) Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem 48:1970–1980PubMedGoogle Scholar
  19. 19.
    Tortorelli S, Hahn SH, Cowan TM, Brewster TG, Rinaldo P, Matern D (2005) The urinary excretion of glutarylcarnitine is an informative tool in the biochemical diagnosis of glutaric acidemia type I. Mol Genet Metab 84:137–143PubMedCrossRefGoogle Scholar
  20. 20.
    Ensenauer R, Vockley J, Willard JM, et al (2004) A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 75:1136–1142PubMedCrossRefGoogle Scholar
  21. 21.
    Oglesbee D, He M, Majumder N, et al (2007) Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med 9:108–116PubMedCrossRefGoogle Scholar
  22. 22.
    Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 13:321–324PubMedCrossRefGoogle Scholar
  23. 23.
    Rinaldo P, Hahn S, Matern D (2004) Clinical biochemical genetics in the twenty-first century. Acta Paediatr 93:22–26Google Scholar
  24. 24.
    Rinaldo P, Studinski AL, Matern D (2001) Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation. Prenat Diagn 21:52–54PubMedCrossRefGoogle Scholar
  25. 25.
    Morel CF, Watkins D, Scott P, Rinaldo P, Rosenblatt DS (2005) Prenatal diagnosis for methylmalonic acidemia and inborn errors of vitamin B12 metabolism and transport. Mol Genet Metab 86:160–171PubMedCrossRefGoogle Scholar
  26. 26.
    Braida L, Crovella S, Boniotto M, et al (2001) A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and amino acids in amniotic fluid. Prenat Diagn 21:543–546PubMedCrossRefGoogle Scholar
  27. 27.
    Van Hove JL, Chace DH, Kahler SG, Millington DS (1993) Acylcarnitines in amniotic fluid: application to the prenatal diagnosis of propionic acidaemia. J Inherit Metab Dis 16:361–367PubMedCrossRefGoogle Scholar
  28. 28.
    Nada MA, Rhead WJ, Sprecher H, Schulz H, Roe CR (1995) Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem 270:530–535PubMedCrossRefGoogle Scholar
  29. 29.
    Nada MA, Vianey-Saban C, Roe CR, et al (1996) Prenatal diagnosis of mitochondrial fatty acid oxidation defects. Prenat Diagn 16:117–124PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt-Sommerfeld E, Bobrowski PJ, Penn D, Rhead WJ, Wanders RJA, Bennet MJ (1998) Analysis of carnitine esters by radio-high performance liquid chromatography in cultured skin fibroblasts from patients with mitochondrial fatty acid oxidation disorders. Pediatr Res 44:210–214PubMedCrossRefGoogle Scholar
  31. 31.
    Roe CR, Roe DS (1999) Recent developments in the investigation of inherited metabolic disorders using cultured human cells. Mol Genet Metab 68:243–257PubMedCrossRefGoogle Scholar
  32. 32.
    Ventura FV, Costa CG, Struys EA, et al (1999) Quantitative acylcarnitine profiling in fibroblasts using U-C-13 palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chim Acta281:1–17PubMedCrossRefGoogle Scholar
  33. 33.
    Shen JJ, Matern D, Millington DS, et al (2000) Acylcarnitines in fibroblasts of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and other fatty acid oxidation disorders. J Inherit Metab Dis 23:27–44PubMedCrossRefGoogle Scholar
  34. 34.
    Roe DS, Vianey-Saban C, Sharma S, Zabot MT, Roe CR (2001) Oxidation of unsaturated fatty acids by human fibroblasts with very-long-chain acyl-CoA dehydrogenase deficiency: aspects of substrate specificity and correlation with clinical phenotype. Clin Chim Acta 312:55–67PubMedCrossRefGoogle Scholar
  35. 35.
    Giak Sim K, Carpenter K, Hammond J, Christodoulou J, Wilcken B (2002) Quantitative fibroblast acylcarnitine profiles in mitochondrial fatty acid beta-oxidation defects: phenotype/metabolite correlations. Mol Genet Metab 76:327–334PubMedCrossRefGoogle Scholar
  36. 36.
    Okun JG, Kolker S, Schulze A, et al (2002) A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta 1584:91–98PubMedGoogle Scholar
  37. 37.
    Young SP, Matern D, Gregersen N, et al (2003) A comparison of in vitro acylcarnitine profiling methods for the diagnosis of classical and variant short chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta 337:103–113PubMedCrossRefGoogle Scholar
  38. 38.
    Schulze-Bergkamen A, Okun JG, Spiekerkotter U, et al (2005) Quantitative acylcarnitine profiling in peripheral blood mononuclear cells using in vitro loading with palmitic and 2-oxoadipic acids: biochemical confirmation of fatty acid oxidation and organic acid disorders. Pediatr Res 58:873–880PubMedCrossRefGoogle Scholar
  39. 39.
    American College of Medical Genetics. Standards and Guidelines for Clinical Genetics Laboratorie, 2005Google Scholar
  40. 40.
    Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429PubMedCrossRefGoogle Scholar
  41. 41.
    Hamilton JJ, Hahn P (1987) Carnitine and carnitine esters in rat bile and human duodenal fluid. Can J Physiol Pharmacol 65:1816–1820PubMedGoogle Scholar
  42. 42.
    Rashed MS, Ozand PT, Bennett MJ, Barnard JJ, Govindaraju DR, Rinaldo P (1995) Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin Chem 41:1109–1114PubMedGoogle Scholar
  43. 43.
    Jakobs BS, Wanders RJ (1995) Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Biochem Biophys Res Commun 213:1035–1041PubMedCrossRefGoogle Scholar
  44. 44.
    Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25:495–520PubMedCrossRefGoogle Scholar
  45. 45.
    Bieber LL, Choi YR (1977) Isolation and identification of aliphatic short-chain acylcarnitines from beef heart: possible role for carnitine in branched-chain amino acid metabolism. Proc Natl Acad Sci U S A 74:2795–2798PubMedCrossRefGoogle Scholar
  46. 46.
    Costa CG, Struys EA, Bootsma A, et al (1997) Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res 38:173–182PubMedGoogle Scholar
  47. 47.
    Schmidt-Sommerfeld E, Penn D, Duran M, et al (1992) Detection and quantitation of acylcarnitines in plasma and blood spots from patients with inborn errors of fatty acid oxidation. Prog Clin Biol Res 375:355–362PubMedGoogle Scholar
  48. 48.
    Yergey AL, Liberato DJ, Millington DS (1984) Thermospray liquid chromatography/mass spectrometry for the analysis of L-carnitine and its short-chain acyl derivatives. Anal Biochem 139:278–283PubMedCrossRefGoogle Scholar
  49. 49.
    Millington DS, Bohan TP, Roe CR, Yergey AL, Liberato DJ (1985) Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clin Chim Acta 145:69–76PubMedCrossRefGoogle Scholar
  50. 50.
    Millington DS, Maltby DA, Roe CR (1986) Rapid detection of argininosuccinic aciduria and citrullinuria by fast atom bombardment and tandem mass spectrometry. Clin Chim Acta 155:173–178PubMedCrossRefGoogle Scholar
  51. 51.
    Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F (1989) Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem 180:331–339PubMedCrossRefGoogle Scholar
  52. 52.
    Matern D, Magera MJ (2001) Mass spectrometry methods for metabolic and health assessment. J Nutr 131:1615S–1620SPubMedGoogle Scholar
  53. 53.
    Heinig K, Henion J (1999) Determination of carnitine and acylcarnitines in biological samples by capillary electrophoresis-mass spectrometry. J Chromatogr B Biomed Sci Appl 735:171–188PubMedCrossRefGoogle Scholar
  54. 54.
    Ghoshal AK, Guo T, Soukhova N, Soldin SJ (2005) Rapid measurement of plasma acylcarnitines by liquid chromatography-tandem mass spectrometry without derivatization. Clin Chim Acta 358:104–112PubMedCrossRefGoogle Scholar
  55. 55.
    Matern D, Strauss AW, Hillman SL, Mayatepek E, Millington DS, Trefz FK (1999) Diagnosis of mitochondrial trifunctional protein deficiency in a blood spot from the newborn screening card by tandem mass spectrometry and DNA analysis. Pediatr Res 46:45–49PubMedCrossRefGoogle Scholar
  56. 56.
    Browning MF, Larson C, Strauss A, Marsden DL (2005) Normal acylcarnitine levels during confirmation of abnormal newborn screening in long-chain fatty acid oxidation defects. J Inherit Metab Dis 28:545–550PubMedCrossRefGoogle Scholar
  57. 57.
    Van Hove JL, Kahler SG, Feezor MD, et al (2000) Acylcarnitines in plasma and blood spots of patients with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Inherit Metab Dis 23:571–582PubMedCrossRefGoogle Scholar
  58. 58.
    Koeberl DD, Young SP, Gregersen NS, et al (2003) Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening. Pediatr Res 54:219–223PubMedCrossRefGoogle Scholar
  59. 59.
    Matern D, He M, Berry SA, et al (2003) Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics 112:74–78PubMedCrossRefGoogle Scholar
  60. 60.
    Abdenur JE, Chamoles NA, Guinle AE, Schenone AB, Fuertes AN (1998) Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. J Inherit Metab Dis 21:624–630PubMedCrossRefGoogle Scholar
  61. 61.
    Gibson KM, Bennett MJ, Naylor EW, Morton DH (1998) 3-Methylcrotonyl-coenzyme a carboxylase deficiency in amish/mennonite adults identified by detection of increased acylcarnitines in blood spots of their children. J Pediatr 132:519–523PubMedCrossRefGoogle Scholar
  62. 62.
    Hintz SR, Matern D, Strauss A, et al (2002) Early neonatal diagnosis of long-chain 3-hydroxyacyl coenzyme a dehydrogenase and mitochondrial trifunctional protein deficiencies. Mol Genet Metab 75:120–127PubMedCrossRefGoogle Scholar
  63. 63.
    Vianey-Saban C, Boyer S, Levrat V, et al (2004) Interference of Cefotaxime in plasma acylcarnitine profile mimicking an increase of 3-hydroxypalmitoleylcarnitine (C16:1-OH) using butyl esters. J Inherit Metab Dis 27:94Google Scholar
  64. 64.
    Malvagia S, la Marca G, Casetta B, et al (2006) Falsely elevated C4-carnitine as expression of glutamate formiminotransferase deficiency in tandem mass spectrometry newborn screening. J Mass Spectrom 41:263–265PubMedCrossRefGoogle Scholar
  65. 65.
    Roe DS, Yang BZ, Vianey-Saban C, Struys E, Sweetman L, Roe CR (2006) Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Mol Genet Metab 87:40–47PubMedCrossRefGoogle Scholar
  66. 66.
    Carrozzo R, Dionisi-Vici C, Steuerwald U, et al. (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130(Pt 3):862-74.PubMedCrossRefGoogle Scholar
  67. 67.
    Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110:259–269PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dietrich Matern
    • 1
  1. 1.Division of Laboratory Genetics, Departments of Laboratory Medicine and Pathology, Medical Genetics, and Pediatric and Adolescent MedicineMayo Clinic College of MedicineRochesterUSA

Personalised recommendations