Advertisement

Call-by-Name and Call-by-Value in Normal Modal Logic

  • Yoshihiko Kakutani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4807)

Abstract

This paper provides a call-by-name and a call-by-value calculus, both of which have a Curry-Howard correspondence to the minimal normal logic K. The calculi are extensions of the λμ-calculi, and their semantics are given by CPS transformations into a calculus corresponding to the intuitionistic fragment of K. The duality between call-by-name and call-by-value with modalities is investigated in our calculi.

Keywords

Modal Logic Classical Logic Typing Rule Lambda Calculus Kripke Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, T.: Completeness of modal proofs in first-order predicate logic. Computer Software, JSSST Journal (to appear)Google Scholar
  2. 2.
    Barber, A.: Dual intuitionistic linear logic. Technical report, LFCS, University of Edinburgh (1996)Google Scholar
  3. 3.
    Barendregt, H.P.: Lambda calculi with types. In: Abramski, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Oxford University Press, Oxford (1992)Google Scholar
  4. 4.
    Bellin, G., de Paiva, V.C.V., Ritter, E.: Extended Curry-Howard correspondence for a basic constructive modal logic. In: Proceedings of Methods for Modalities (2001)Google Scholar
  5. 5.
    Bierman, G.M.: What is a categorical model of intuitionistic linear logic. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Studia Logica 65(3), 383–416 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  8. 8.
    Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the ACM 48(3), 555–604 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    de Groote, P.: A cps-translation of the λμ-calculus. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 85–99. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Filinski, A.: Declarative continuations and categorical duality. Master’s thesis, Computer Science Department, University of Copenhagen (1989)Google Scholar
  11. 11.
    Fischer, M.: Lambda calculus schemata. In: Proving Assertions about Programs, pp. 104–109. ACM Press, New York (1972)CrossRefGoogle Scholar
  12. 12.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Griffin, T.G.: A formulae-as-types notion of control. In: Principles of Programming Languages, pp. 47–58. ACM Press, New York (1990)Google Scholar
  14. 14.
    Hofmann, M., Streicher, T.: Continuation models are universal for λμ-calculus. In: Logic in Computer Science, pp. 387–397. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  15. 15.
    Howard, W.A.: The formulae-as-types notion of construction. In: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)Google Scholar
  16. 16.
    Kakutani, Y.: Duality between call-by-name recursion and call-by-value iteration. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 506–521. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Kakutani, Y.: Calculi for intuitionistic normal modal logic. In: Proceedings of Programming and Programming Languages (2007)Google Scholar
  18. 18.
    Kripke, S.: Semantic analysis of modal logic I, normal propositional logic. Zeitschrift für Mathemathische Logik und Grundlagen der Mathematik 9, 67–96 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  20. 20.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Maietti, M.E., Maneggia, P., de Paiva, V.C.V., Ritter, E.: Relating categorical semantics for intuitionistic linear logic. Applied Categorical Structures 13(1), 1–36 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Martini, S., Masini, A.: A computational interpretation of modal proofs. In: Proof Theory of Modal Logics, pp. 213–241. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  23. 23.
    Miyamoto, K., Igarashi, A.: A modal foundation for secure information flow. In: Proceedings of Foundations of Computer Security (2004)Google Scholar
  24. 24.
    Moggi, E.: Computational lambda-calculus and monads. In: Logic in Computer Science, pp. 14–23. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  25. 25.
    Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with control. In: Principle of Programming Languages, pp. 215–227. ACM Press, New York (1997)Google Scholar
  26. 26.
    Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  27. 27.
    Plotkin, G.D.: Call-by-name, call-by-value and the lambda calculus. Theoretical Computer Science 1(2), 125–159 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pym, D., Ritter, E.: On the semantics of classical disjunction. Journal of Pure and Applied Algebra 159(2,3), 315–338 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree coalgebras. In: Categories in Computer Science and Logic. Contemporary Mathematics, vol. 92, pp. 371–389. AMS (1989)Google Scholar
  30. 30.
    Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical Structures in Computer Science 11(2), 207–260 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Selinger, P.: Some remarks on control categories. Manuscript (2003)Google Scholar
  32. 32.
    Shan, C.-C.: A computastional interpretation of classical S4 modality. In: Proceedings of Intuitionistic Modal Logics and Applications (2005)Google Scholar
  33. 33.
    Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logics. PhD thesis, University of Edinburgh (1993)Google Scholar
  34. 34.
    Wadler, P.: Call-by-value is dual to call-by-name. In: International Conference on Functional Programming, pp. 189–201. ACM Press, New York (2003)Google Scholar
  35. 35.
    Wijesekera, D.: Constructive modal logic I. Annals of Pure and Applied Logic 50, 271–301 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yoshihiko Kakutani
    • 1
  1. 1.Department of Information Science, University of Tokyo 

Personalised recommendations