Complete Lattices and Up-To Techniques

  • Damien Pous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4807)

Abstract

We propose a theory of up-to techniques for proofs by coinduction, in the setting of complete lattices. This theory improves over existing results by providing a way to compose arbitrarily complex techniques with standard techniques, expressed using a very simple and modular semi-commutation property.

Complete lattices are enriched with monoid operations, so that we can recover standard results about labelled transitions systems and their associated behavioural equivalences at an abstract, “point-free” level.

Our theory gives for free a powerful method for validating up-to techniques. We use it to revisit up to contexts techniques, which are known to be difficult in the weak case: we show that it is sufficient to check basic conditions about each operator of the language, and then rely on an iteration technique to deduce general results for all contexts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29(9), 737–760 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arun-Kumar, S., Natarajan, V.: Conformance: A precongruence close to bisimilarity. In: Proc. Struct. in Concurrency Theory, Springer, London (1995)Google Scholar
  3. 3.
    Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  4. 4.
    Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to mathematical induction. Theoretical Computer Science 179(1–2), 103–135 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fournet, C., Lévy, J.-J., Schmitt, A.: An asynchronous, distributed implementation of mobile ambients. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. Journal of Logic and Algebraic Programming 63(1), 131–173 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hennessy, M., Rathke, J.: Typed behavioural equivalences for processes in the presence of subtyping. Math. Struct. in Computer Science 14(5), 651–684 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Honda, K., Yoshida, N.: Kohei Honda and Nobuka Yoshida. Theoretical Computer Science 151(2), 437–486 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Information and Computation 124, 103–112 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lassen, S.B.: Relational reasoning about contexts. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, Cambridge University Press, Cambridge (1998)Google Scholar
  11. 11.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  12. 12.
    Pous, D.: On bisimulation proofs for the analysis of distributed abstract machines. In: Montanari, U., Sannella, D. (eds.) Proc. TGC 2006. LNCS, vol. 4661, Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Pous, D.: Weak bisimulation up to elaboration. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 390–405. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Pous, D.: New up-to techniques for weak bisimulation. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Sangiorgi, D.: On the bisimulation proof method. Journal of Math. Struct. in Computer Science 8, 447–479 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sangiorgi, D.: Personal communication (2006)Google Scholar
  17. 17.
    Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: LICS 2007, pp. 293–302. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  18. 18.
    Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up to. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  19. 19.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  20. 20.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Damien Pous
    • 1
  1. 1.LIP: UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668France

Personalised recommendations