Advertisement

Timed, Distributed, Probabilistic, Typed Processes

  • Martin Berger
  • Nobuko Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4807)

Abstract

This paper studies types and probabilistic bisimulations for a timed π-calculus as an effective tool for a compositional analysis of probabilistic distributed behaviour. The types clarify the role of timers as interface between non-terminating and terminating communication for guaranteeing distributed liveness. We add message-loss probabilities to the calculus, and introduce a notion of approximate bisimulation that discards transitions below a certain specified probability threshold. We prove this bisimulation to be a congruence, and use it for deriving quantitative bounds for practical protocols in distributed systems, including timer-driven message-loss recovery and the Two-Phase Commit protocol.

Keywords

Distribute System Type Process Weak Transition Linear Output Linear Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahern, A., Yoshida, N.: Formalising Java RMI with Explicit Code Mobility. In: Proc. OOPSLA 2005, ACM Press, New York (2005) A full version will appear in TCSGoogle Scholar
  2. 2.
    Andova, S., Baeten, J.C.M., Willemse, T.A.C.: A complete axiomatisation of branching bisimulation for probabilistic systems with an application in protocol verification. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 327–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Berger, M.: Towards Abstractions for Distributed Systems. PhD thesis, Imperial College, London (2002)Google Scholar
  4. 4.
    Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous π-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 115–130. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Berger, M., Honda, K., Yoshida, N.: Genericity and the π-calculus. Acta Inf. 42(2-3), 83–141 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. Long version of the present paper, draft (2007)Google Scholar
  8. 8.
    Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming for Web Services. In: ESOP 2007. LNCS, vol. 4421, Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Chatzikokolakis, K., Palamidessi, C.: A Framework to Analyze Probabilistic Protocols and its Application to the Partial Secrets Exchange. TCS (to appear)Google Scholar
  10. 10.
    Chen, J.: A timed mobile calculus. In: Proc. Nordic Workshop on Programming Theory, pp. 65–67 (2004)Google Scholar
  11. 11.
    Deng, Y., Du, W.: Probabilistic Barbed Congruence. In: Proc. QAPL (to appear, 2007)Google Scholar
  12. 12.
    Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. TCS 373(1-2), 92–114 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for Labelled Markov Processes. TCS 318(3), 354–413 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proc. LICS, pp. 413–422 (2002)Google Scholar
  15. 15.
    Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proc. Conf. on Programming Concepts and Methods, pp. 443–458 (1990)Google Scholar
  16. 16.
    Gray, C.G., Cheriton, D.R.: Leases: an efficient fault-tolerant mechanism for distributed file cache consistency. Technical Report CS-TR-90-1298, Stanford University (1990)Google Scholar
  17. 17.
    Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous π-calculus. In: Tiuryn, J. (ed.) ETAPS 2000 and FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Honda, K.: Composing Processes. In: POPL 1996, pp. 344–357. ACM Press, New York (1996)CrossRefGoogle Scholar
  19. 19.
    Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In: POPL 2002, pp. 81–92. ACM Press, New York (2002) Full version to appear in ACM TOPLASCrossRefGoogle Scholar
  20. 20.
    Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theoretical Computer Science 311(1-3), 121–163 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf. 42(4-5), 291–347 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. ACM TOPLAS 21(5), 914–947 (1999)CrossRefGoogle Scholar
  24. 24.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp. 104–113. Springer, Heidelberg (1999)Google Scholar
  25. 25.
    Mills, D.L.: The network computer as precision timekeeper. In: PTTI, pp. 96–108 (1996)Google Scholar
  26. 26.
    Mullender, S. (ed.): Distributed Systems. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar
  27. 27.
    Rounds, W.C., Song, H.: The Phi-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems. In: Proc. HSCC, pp. 435–449 (2003)Google Scholar
  28. 28.
    Segala, R.: Probability and Nondeterminism in Operational Models of Concurrency. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    van Breugel, F., Worrell, J.: A Behavioural Pseudometric for Probabilistic Transition Systems. TCS 331(1), 115–142 (2005)zbMATHCrossRefGoogle Scholar
  30. 30.
    Varacca, D., Yoshida, N.: Probabilistic π-Calculus and Event Structures. In: Proc. QAPL, ENTCS (to appear, 2007)Google Scholar
  31. 31.
    Ying, M.: π-calculus with noisy channels. Acta Informatica 41(9), 525–593 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Yoshida, N., Berger, M., Honda, K.: Strong Normalisation in the π-Calculus. Inf. & Comp. 191(2004), 145–202 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Berger
    • 1
  • Nobuko Yoshida
    • 1
  1. 1.Department of Computing, Imperial College London 

Personalised recommendations