Scalable Simulation of Cellular Signaling Networks

  • Vincent Danos
  • Jérôme Feret
  • Walter Fontana
  • Jean Krivine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4807)

Abstract

Given the combinatorial nature of cellular signalling pathways, where biological agents can bind and modify each other in a large number of ways, concurrent or agent-based languages seem particularly suitable for their representation and simulation [1,2,3,4]. Graphical modelling languages such as κ [5, 6, 7, 8], or the closely related BNG language [9,10,11,12,13,14], seem to afford particular ease of expression. It is unclear however how such models can be implemented. Even a simple model of the EGF receptor signalling network can generate more than \(\oldstylenums{10^{23}}\) non-isomorphic species [5], and therefore no approach to simulation based on enumerating species (beforehand, or even on-the-fly) can handle such models without sampling down the number of potential generated species.

We present in this paper a radically different method which does not attempt to count species. The proposed algorothm uses a representation of the system together with a super-approximation of its ‘event horizon’ (all events that may happen next), and a specific correction scheme to obtain exact timings. Being completely local and not based on any kind of enumeration, this algorithm has a per event time cost which is independent of (i) the size of the set of generable species (which can even be infinite), and (ii) independent of the size of the system (ie, the number of agent instances). We show how to refine this algorithm, using concepts derived from the classical notion of causality, so that in addition to the above one also has that the even cost is depending (iii) only logarithmically on the size of the model (ie, the number of rules). Such complexity properties reflect in our implementation which, on a current computer, generates about \(\oldstylenums{10^6}\) events per minute in the case of the simple EGF receptor model mentioned above, using a system with \(\oldstylenums{10^5}\) agents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  2. 2.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)Google Scholar
  3. 3.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419 (2002)Google Scholar
  4. 4.
    Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V. (eds.) CONCUR 2007. LNCS, vol. 4703, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Curien, P.L., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly (submitted, 2007)Google Scholar
  7. 7.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Faeder, J., Blinov, M., Hlavacek, W.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140 (2005)Google Scholar
  10. 10.
    Faeder, J., Blinov, M.B.G., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Complexity 10, 22–41 (2005)CrossRefGoogle Scholar
  11. 11.
    Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based modeling of biochemical networks. In: BioCONCUR 2005 (2005)Google Scholar
  12. 12.
    Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Systems Biology 2(1), 5–15 (2005)CrossRefGoogle Scholar
  13. 13.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)CrossRefGoogle Scholar
  14. 14.
    Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., Fontana, W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006(344) (2006)Google Scholar
  15. 15.
    Kiyatkin, A., Aksamitiene, E., Markevich, N., Borisov, N., Hoek, J., Kholodenko, B.: Scaffolding Protein Grb2-associated Binder 1 Sustains Epidermal Growth Factor-induced Mitogenic and Survival Signaling by Multiple Positive Feedback Loops. Journal of Biological Chemistry 281(29) (2006)Google Scholar
  16. 16.
    Aldridge, B., Burke, J., Lauffenburger, D., Sorger, P.: Physicochemical modelling of cell signalling pathways. Nat. Cell. Biol. 8, 1195–1203 (2006)CrossRefGoogle Scholar
  17. 17.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  18. 18.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  19. 19.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proceedings of BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, vol. 180, pp. 31–49. Elsevier, Amsterdam (2003)Google Scholar
  21. 21.
    Cardelli, L.: Brane calculi. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, vol. 180, Elsevier, Amsterdam (2003)Google Scholar
  22. 22.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Nielson, H.R. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Pawson, T., Nash, P.: Assembly of Cell Regulatory Systems Through Protein Interaction Domains. Science 300, 445–452 (2003)CrossRefGoogle Scholar
  24. 24.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Proceedings of CMSB 2007. LNCS(LNBI), vol. 4695, Springer, Heidelberg (2007)Google Scholar
  25. 25.
    Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. In: Proceedings of QAPL. ENTCS, vol. 164, pp. 101–117 (2006)Google Scholar
  26. 26.
    Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comp. Phys. 17, 10–18 (1975)CrossRefGoogle Scholar
  27. 27.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem 81, 2340–2361 (1977)CrossRefGoogle Scholar
  28. 28.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Berry, G., Lévy, J.J.: Minimal and optimal computation of recursive programs. JACM 26, 148–175 (1979)MATHCrossRefGoogle Scholar
  30. 30.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theoretical Computer Science 13, 85–108 (1981)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Darondeau, P., Degano, P.: Causal trees. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) Automata, Languages and Programming. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  32. 32.
    Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 561–576. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  33. 33.
    Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 411–427. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  34. 34.
    Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus. Acta Inf. 35, 353–400 (1998)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Degano, P., Priami, C.: Non-interleaving semantics for mobile processes. Theoretical Computer Science 216(1-2), 237–270 (1999)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Baldi, C., Degano, P., Priami, C.: Causal π-calculus for biochemical modeling. In: Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)Google Scholar
  37. 37.
    Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling biochemical pathways through enhanced π-calculus. Theor. Comp. Sci. 325, 111–140 (2004)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)Google Scholar
  39. 39.
    Morton-Firth, C.J.: Stochastic simulation of cell signalling pathways. PhD thesis, Cambridge (1998)Google Scholar
  40. 40.
    Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars. Annals of Mathematics and Artificial Intelligence (2007)Google Scholar
  41. 41.
    Giavitto, J.L., Michel, O.: MGS: a programming language for the transformations of topological collections. Technical Report 61-2001, LaMI (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vincent Danos
    • 1
    • 4
  • Jérôme Feret
    • 3
  • Walter Fontana
    • 1
    • 2
  • Jean Krivine
    • 5
  1. 1.Plectix Biosystems 
  2. 2.CNRS, Université Denis Diderot 
  3. 3.Harvard Medical School 
  4. 4.École Normale Supérieure 
  5. 5.École Polytechnique 

Personalised recommendations