On-Line Rectification of Sport Sequences with Moving Cameras

  • Jean-Bernard Hayet
  • Justus Piater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4827)

Abstract

This article proposes a global approach to the rectification of sport sequences, to estimate the mapping from the video images to the terrain in the ground plane without using position sensors on the TV camera. Our strategy relies on three complementary techniques: (1) initial homography estimation using line-feature matching, (2) homography estimation with line-feature tracking, and (3) incremental homography estimation through point-feature tracking. Together, they allow continuous homography estimation over time, even during periods where the video does not contain sufficient line features to determine the homography from scratch. We illustrate the complementarity of the 3 techniques on a set of challenging examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Ren, J., Orwell, J., Jones, G., Xu, M.: Real-time 3D soccer ball tracking from multiple cameras. In: BMVC 2004. Proc. of the British Machine Vision Conf, pp. 829–838 (2004)Google Scholar
  3. 3.
    Farin, D., Krabbe, S., de With, P., Effelsberg, W.: Robust camera calibration for sport videos using court models. SPIE Electronic Imaging 5307 (2004)Google Scholar
  4. 4.
    Hayet, J., Piater, J., Verly, J.: Fast 2D model-to-image registration using vanishing points for sports video analysis. In: ICIP 2005. Proc. of IEEE Int. Conf. on Image Processing, Genoa, Italy, vol. 3, pp. 417–420 (2005)Google Scholar
  5. 5.
    Lihe, Q., Luo, Y.: Automatic camera calibration for images of soccer match. In: Proc. of the Int. Conf. on Computational Intelligence, pp. 482–485 (2004)Google Scholar
  6. 6.
    Reid, I.D., Zisserman, A.: Goal-directed video metrology. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 647–658. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Okuma, K., J., L.J., Lowe, D.G.: Automatic rectification of long image sequences. In: Okuma, K. (ed.) ACCV 2004. Proc. of the Asian Conf. on Computer Vision (2004)Google Scholar
  8. 8.
    Kim, H., Hong, K.: Robust image mosaicing of soccer videos using self-calibration and line tracking. Pattern Analysis and Applications 4, 9–19 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Drummond, T., Cipolla, R.: Real-time tracking of complex structures with on-line camera calibration. In: BMVC 1999. Proc. of the British Machine Vision Conf, pp. 574–583 (1999)Google Scholar
  10. 10.
    Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: CVPR 2005. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 510–517. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  11. 11.
    Haralick, R.: Propagating covariance in computer vision. In: Proc. of ECCV Workshop of Performance Characteristics of Vision Algorithms, pp. 1–12 (1996)Google Scholar
  12. 12.
    Criminisi, A.: Accurate Visual Metrology from Single and Multiple Uncalibrated Images. PhD thesis, University of Oxford, Dept. Engineering Science (1999)Google Scholar
  13. 13.
    Papadopoulo, T., Lourakis, M.: Estimating the jacobian of the singular value decomposition: Theory and applications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 554–570. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jean-Bernard Hayet
    • 1
  • Justus Piater
    • 2
  1. 1.CIMAT, A.C., Jalisco S/N, 36240 Guanajuato, GTOMexico
  2. 2.Institut Montefiore, University of Liege, 4000 LiegeBelgium

Personalised recommendations