Compiling Solution Configurations in Semiring Valuation Systems

  • Marc Pouly
  • Rolf Haenni
  • Michael Wachter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4827)

Abstract

This paper describes a new method for solving optimization queries in semiring valuation systems. In contrast to existing techniques which focus essentially on the identification of solution configurations, we propose foremost the construction of an implicit representation of the solution configuration set in the shape of a Boolean function. This intermediate compilation step allows then to efficiently execute many further relevant queries that go far beyond the traditional task of enumerating solution configurations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function proagation. In: Shachter, R.D., Levitt, T.S., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence 4. Machine intelligence and pattern recognition  9, 169–198 (1990)Google Scholar
  2. 2.
    Shafer, G.: An axiomatic study of computation in hypertrees. Working Paper 232, School of Business, University of Kansas (1991)Google Scholar
  3. 3.
    Kohlas, J.: Information Algebras: Generic Structures for Inference. Springer, Heidelberg (2003)MATHGoogle Scholar
  4. 4.
    Shenoy, P.: Axioms for dynamic programming. In: Gammerman, A. (ed.) Computational Learning and Probabilistic Reasoning, pp. 259–275. Wiley, Chichester (1996)Google Scholar
  5. 5.
    Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, London (1972)MATHGoogle Scholar
  6. 6.
    Wilson, N.: Decision diagrams for the computation of semiring valuations. In: IJCAI 2005. 19th International Joint Conference on Artificial Intelligence, pp. 331–336 (2005)Google Scholar
  7. 7.
    Mateescu, R., Dechter, R.: Compiling constraint networks into and/or multi-valued decision diagrams (aomdds). In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 329–343. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res (JAIR) 17, 229–264 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for representing Boolean functions. In: KR 2006. 10th International Conference on Principles of Knowledge Representation and Reasoning, pp. 277–285 (2006)Google Scholar
  10. 10.
    Shenoy, P.: Valuation-based systems: A framework for managing uncertainty in expert systems. In: Fuzzy Logic for the Management of Uncertainty, pp. 83–104 (1992)Google Scholar
  11. 11.
    Schneuwly, C., Pouly, M., Kohlas, J.: Local computation in covering join trees. Technical Report 04-16, University of Fribourg (2004)Google Scholar
  12. 12.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960)MATHMathSciNetGoogle Scholar
  13. 13.
    Pouly, M., Kohlas, J.: Local computation & dynamic programming. Technical Report 07-02, University of Fribourg (2007)Google Scholar
  14. 14.
    Kohlas, J., Wilson, N.: Exact and approximate local computation in semiring induced valuation algebras. Technical Report 06-06, University of Fribourg (2006)Google Scholar
  15. 15.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs and valued CSPs: Frameworks, properties, comparison. Constraints 4, 199–240 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978)Google Scholar
  17. 17.
    Darwiche, A.: Decomposable negation normal form. J. ACM 48, 608–647 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marc Pouly
    • 1
  • Rolf Haenni
    • 2
    • 3
  • Michael Wachter
    • 3
  1. 1.University of FribourgSwitzerland
  2. 2.Bern University of Applied SciencesSwitzerland
  3. 3.University of BernSwitzerland

Personalised recommendations