Advertisement

Stabilizing Flocking Via Leader Election in Robot Networks

  • Davide Canepa
  • Maria Gradinariu Potop-Butucaru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4838)

Abstract

Flocking is the ability of a group of robots to follow a leader or head whenever it moves in a plane (two dimensional Cartesian space). In this paper we propose and prove correct an architecture for a self-organizing and stabilizing flocking system. Contrary to the existing work on this topic our flocking architecture does not rely on the existence of a specific leader a priori known to every robot in the network. In our approach robots are uniform, start in an arbitrary configuration and the head of the group is elected via algorithmic tools.

Our contribution is threefold. First, we propose novel probabilistic solutions for leader election in asynchronous settings under bounded schedulers. Additionally, we prove the impossibility of deterministic leader election when robots have no common coordinates and start in an arbitrary configuration. Secondly, we propose a collision free deterministic algorithm for circle formation designed for asynchronous networks. Thirdly, we propose a deterministic flocking algorithm totally independent of the existence of an a priori known leader. The proposed algorithm also works in asynchronous networks.

Keywords

Mobile Robot Leader Election Autonomous Mobile Robot Circle Formation Free Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: Proc. ERSADS 2001, pp. 185–190 (2001)Google Scholar
  2. 2.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination of a set of autonomous mobile robots. In: IVS 2000. IEEE Intelligent Vehicles Symposium, pp. 480–485 (2000)Google Scholar
  3. 3.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots—formation and agreement problems. In: SIROCCO 1996. Proceedings of the 3rd International Colloquium on Structural Information and Communication Complexity (1996)Google Scholar
  4. 4.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots formation and agreement problems. Technical report, Wisconsin Univ. Milwakee, Dep. of Electrical Engineering and Computer Science, 6 (1994)Google Scholar
  6. 6.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theoretical Computer Science 337, 147–168 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust gathering of asynchronous mobile robots with limited visibility. Research Report IS-RR-2005-010, JAIST, Ishikawa, Japan (2005)Google Scholar
  8. 8.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: SODA 2004. Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1070–1078 (2004)Google Scholar
  11. 11.
    Défago, X., Gradinariu, M., Messika, S., Parvédy, P.R.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Kasuya, M., Ito, N., Inuzuka, N., Wada, K.: A pattern formation algorithm for a set of autonomous distributed robots with agreement on orientation along one axis. Systems and Computers in Japan 37(10), 89–100 (2006)CrossRefGoogle Scholar
  13. 13.
    Qadi, A., Huang, J., Farritor, S.M., Goddard, S.: Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Transactions on Mechatronics 11, 205–215 (2006)CrossRefGoogle Scholar
  14. 14.
    Renaud, P., Cervera, E., Martiner, P.: Towards a reliable vision-based mobile robot formation control. In: IROS. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3176–3181 (2004)Google Scholar
  15. 15.
    Lindhe, M.: A flocking and obstacle avoidance algorithm for mobile robots. PhD thesis, KTH Stockholm (2004)Google Scholar
  16. 16.
    Gervasi, V., Prencipe, G.: Flocking by a set of autonomous mobile robots. Technical Report TR-01-24, Universitat di Pisa (2001)Google Scholar
  17. 17.
    Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 144(3), 324–344 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Angluin, D., Aspnes, J., Fischer, M., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 79–90. Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Barri, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Electing a leader among anonymous mobile agents in anonymous networks with sense-of-direction. Technical Report 1310, Technical Report LRI, Laboratoire de recherche en Informatique, Université Paris-Sud, France, (April 2002)Google Scholar
  21. 21.
    Dieudonne, Y., Petit, F.: Circle formation of weak robots and lyndon words. Inf. Process. Lett. 101(4) (2007)Google Scholar
  22. 22.
    Prencipe, G.: Achievable patterns by an even number of autonomous mobile robots. Technical Report TR-00-11, Universitat di Pisa (2000)Google Scholar
  23. 23.
    Canepa, D., Gradinariu, M.: Stabilizing flocking via leader election in robot networks. Technical Report 6268, INRIA, France (2007)Google Scholar
  24. 24.
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  25. 25.
    Suissi, S.: Fault resilient cooperation of Autonomous Mobile robots with unreliable compass sensors. PhD thesis, JAIST, Japon (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Davide Canepa
    • 1
  • Maria Gradinariu Potop-Butucaru
    • 1
  1. 1.Université Pierre et Marie Curie (Paris 6), LIP6, CNRS, INRIAFrance

Personalised recommendations