Visual Information Retrieval – Future Directions and Grand Challenges

  • Michael Lew
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4781)


We are at the beginning of the digital Age of Information, a digital Renaissance allowing us to communicate, share, and learn in novel ways and resulting in the creation of new paradigms. However, having access to all of the knowledge in the world is pointless without a means to search for it. Visual information retrieval is poised to give access to the myriad forms of images and video, comprising knowledge from individuals and cultures to scientific fields and artistic communities. In this paper I summarize the current state of the field and discuss promising future directions and grand challenges.


Visual Information Retrieval Grand Challenges 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based Multimedia Information Retrieval: State-of-the-art and Challenges. ACM Transactions on Multimedia Computing, Communication, and Applications 2(1), 1–19 (2006)CrossRefGoogle Scholar
  2. 2.
    Lew, M.S.: Principles of Visual Information Retrieval. Springer, London (2001)zbMATHGoogle Scholar
  3. 3.
    Sebe, N., Lew, M.S., Zhou, X., Huang, T.S., Bakker, E.: The State of the Art in Image and Video Retrieval. In: Bakker, E.M., Lew, M.S., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 1–8. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Lew, M.S.: Next Generation Web Searches for Visual Content, pp. 46–53. IEEE Computer, Los Alamitos (2000)Google Scholar
  5. 5.
    Buijs, J.M., Lew, M.S.: Learning Visual Concepts. In: ACM-MM. Proceedings of the Seventh ACM International Conference on Multimedia, vol. 2, pp. 5–7 (1999)Google Scholar
  6. 6.
    Lew, M.S., Sebe, N.: Visual Websearching Using Iconic Queries. In: CVPR. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2788–2789 (2000)Google Scholar
  7. 7.
    Lew, M.S., Huijsmans, N.: Information Theory and Face Detection. In: ICPR. Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, August 25-30, pp. 601–605 (1996)Google Scholar
  8. 8.
    Lew, M.S.: Information theoretic view-based and modular face detection. In: Proceedings of the IEEE Face and Gesture Recognition Conference, Killington, VT, pp. 198–203 (1996)Google Scholar
  9. 9.
    Sebe, N., Lew, M.S., Cohen, I., Sun, Y., Gevers, T., Huang, T.S.: Authentic Facial Expression Analysis. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, pp. 517–522 (May 2004)Google Scholar
  10. 10.
    Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, T.S.: Facial expression recognition from video sequences. In: ICME. Proceedings of the IEEE International Conference Multimedia and Expo, Lausanne, Switzerland, vol. I, pp. 641–644 (2002)Google Scholar
  11. 11.
    Sebe, N., Lew, M.S., Huijsmans, N.: Toward Improved Ranking Metrics, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1132–1143 (October 2000)Google Scholar
  12. 12.
    Lew, M.S., Huang, T.S., Wong, K.W.: Learning and Feature Selection in Stereo Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 869–881 (September 1994)Google Scholar
  13. 13.
    Sebe, N., Lew, M.S.: Wavelet Based Texture Classification. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, vol III, pp. 959–962 (2000)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Yang, M., Kriegman, D.J., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 34–58 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Lew
    • 1
  1. 1.LIACS Media Lab, Leiden University 

Personalised recommendations