Stereo Matching Using Population-Based MCMC

  • Joonyoung Park
  • Wonsik Kim
  • Kyoung Mu Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4844)

Abstract

In this paper, we propose a new stereo matching method using the population-based Markov Chain Monte Carlo (Pop-MCMC). Pop-MCMC belongs to the sampling-based methods. Since previous MCMC methods produce only one sample at a time, only local moves are available. However, since Pop-MCMC uses multiple chains and produces multiple samples at a time, it enables global moves by exchanging information between samples, and in turn leads to faster mixing rate. In the view of optimization, it means that we can reach a state with the lower energy. The experimental results on real stereo images demonstrate that the performance of proposed algorithm is superior to those of previous algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Microsoft Research Technical Report MSR-TR-2001-81 (2001)Google Scholar
  2. 2.
    Birchfield, S., Tomasi, C.: A Pixel Dissimilarity Measure That is Insensitive to Image Sampling. IEEE Trans. Pattern Analysis and Machine Intelligence (1998)Google Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. Int’l. Conf. Computer Vision, pp. 508–515 (2001)Google Scholar
  5. 5.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Proc. European Conf. Computer Vision, pp. 82–96 (2002)Google Scholar
  6. 6.
    Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)CrossRefGoogle Scholar
  7. 7.
    Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search. TPAMI 2, 449–470 (1985)Google Scholar
  8. 8.
    Veksler, O.: Stereo Correspondence by Dynamic Programming on a Tree. Computer Vision and Pattern Recognition (2005)Google Scholar
  9. 9.
    Barbu, A., Zhu, S.C.: Graph Partition By Swendsen-Wang cuts: International Conf. Computer Vision, pp. 320–327 (2003)Google Scholar
  10. 10.
    Barbu, A., Zhu, S.C.: Multigrid and multi-level Swendsen-Wang cuts for hierarchic graph partition. Computer Vision and Pattern Recognition, 731–738 (2004)Google Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Liang, F., Wong, W.H.: Evolutionary Monte Carlo: Applications to Model Sampling and Change Point Problem. Statistica Sinica 10, 317–342 (2000)MATHGoogle Scholar
  13. 13.
    Jasra, A., Stephens, D.A.: On Population-Based Simulation for Static Inference (2005)Google Scholar
  14. 14.
    Comanicu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell. 24, 603–619 (2002)CrossRefGoogle Scholar
  15. 15.
    Tao, H., Sawhney, H.S., Kumar, R.: A Global Matching Framework for Stereo Computation. In: Proc. Int’l. Conf. Computer Vision, vol. 1, pp. 532–539 (2001)Google Scholar
  16. 16.
    Bleyer, M., Gelautz, M.: Graph-based surface reconstruction from stereo pairs using image segmentation. In: Proc. SPIE, Videometrics VIII, vol. 5665, pp. 288–299 (2005)Google Scholar
  17. 17.
    Hong, L., Chen, G.: Segment-Based Stereo Matching Using Graph Cuts. Computer Vision and Pattern Recognition, I, 74–81 (2004)Google Scholar
  18. 18.
    Klaus, A., Sormann, M., Karner, K.: Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure. In: International Conf. Pattern Recognition, pp. 15–18 (2006)Google Scholar
  19. 19.
    Geyer, C.J.: Markov chain Monte Carlo maximum likelihood, Computing Science and Statistics, 156–163 (1991)Google Scholar
  20. 20.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608Google Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joonyoung Park
    • 1
  • Wonsik Kim
    • 2
  • Kyoung Mu Lee
    • 2
  1. 1.DM research Lab., LG Electronics Inc., 16 Woomyeon-Dong, Seocho-Gu, 137-724, SeoulKorea
  2. 2.School of EECS, ASRI, Seoul National University, 151-742, SeoulKorea

Personalised recommendations