Advertisement

Shape Recovery from Turntable Image Sequence

  • H. Zhong
  • W. S. Lau
  • W. F. Sze
  • Y. S. Hung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4844)

Abstract

This paper makes use of both feature points and silhouettes to deliver fast 3D shape recovery from a turntable image sequence. The algorithm exploits object silhouettes in two views to establish a 3D rim curve, which is defined with respect to the two frontier points arising from two views. The images of this 3D rim curve in the two views are matched using cross correlation technique with silhouette constraint incorporated. A 3D planar rim curve is then reconstructed using point-based reconstruction method. A set of rims enclosing the object can be obtained from an image sequence captured under circular motion. The proposed method solves the problem of reconstruction of concave object surface, which is usually left unresolved in general silhouette-based reconstruction methods. In addition, the property of the organized reconstructed rim curves allows fast surface extraction. Experimental results with real data are presented.

Keywords

silhouette rim reconstruction surface extraction circular motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, J., Zheng, N.N., Shum, H.Y.: Stereo Matching Using Belief Propagation. IEEE Transation on Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)CrossRefGoogle Scholar
  2. 2.
    Sun, C.: Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques. International Journal of Computer Vision 47(1/2/3), 99–117 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Koch, R., Pollefeys, M., Van Gool, L.: Multi viewpoint stereo from uncalibrated video sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 55–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Pollefeys, M., Van Gool, L.: From Images to 3D Models, Ascona, pp. 403–410 (2001)Google Scholar
  5. 5.
    Tang, W.K.: A Factorization-Based Approach to 3D Reconstruction from Multiple Uncalibrated Images. In: Department of Electrical and Electronic Engineering, p. 245. The University of Hong Kong, Hong Kong (2004)Google Scholar
  6. 6.
    Baumgart, B.G.: Geometric Modelling for Computer Vision. Standford University (1974)Google Scholar
  7. 7.
    Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2), 150–162 (1994)CrossRefGoogle Scholar
  8. 8.
    Boyer, E., Franco, J.S.: A hybrid approach for computing visual hulls of complex objects. Computer Vision and Pattern Recognition, 695–701 (2003)Google Scholar
  9. 9.
    Brand, M., Kang, K., Cooper, B.: An algebraic solution to visual hull. Computer Vision and Pattern Recognition, 30–35 (2004)Google Scholar
  10. 10.
    Liang, C., Wong, K.Y.K.: Complex 3D Shape Recovery Using a Dual-Space Approach. In: IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 878–884. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  11. 11.
    Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2), 150–158 (1983)Google Scholar
  12. 12.
    Chien, C.H., Aggarwal, J.K.: Volume/surface octrees for the representation of three-dimensional objects. Computer Vision, Graphics and Image Processing 36(1), 100–113 (1986)CrossRefGoogle Scholar
  13. 13.
    Hong, T.H., Shneier, M.O.: Describing a robot’s workspace using a sequence of views from a moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(6), 721–726 (1985)Google Scholar
  14. 14.
    Szeliski, R.: Rapid octree construction from image sequences. Computer Vision, Graphics and Image Processing 58(1), 23–32 (1993)CrossRefGoogle Scholar
  15. 15.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  16. 16.
    Esteban, C.H., Schmitt, F.: Silhouette and Stereo fusion for 3D object modeling. Computer Vision and Image Understanding (96), 367–392 (2004)Google Scholar
  17. 17.
    Sinha, S., Pollefeys, M.: Multi-view reconstruction using Photo-consistency and Exact silhouette constraints: A Maximum-Flow Formulation. In: IEEE International Conference on Computer Vision, pp. 349–356. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Furukawa, Y., Ponce, J.: Carved Visual Hulls for Image-Based Modeling. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: International Conference on Computer Vision, Kerkyra, Greece, pp. 307–314 (1999)Google Scholar
  20. 20.
    Isidoro, J., Sclaroff, S.: Stochastic Refinement of the Visual Hull to Satisfy Photometric and Silhouette Consistency Constraints. In: IEEE International Conference on Computer Vision, pp. 1335–1342. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  21. 21.
    Cipolla, R., Giblin, P.J.: Visual Motion of Curves and Surfaces. Cambridge Univ. Press, Cambridge, U.K. (1999)Google Scholar
  22. 22.
    Wong, K.Y.K.: Structure and Motion from Silhouettes. In: Department of Engineering, p. 196. University of Cambridge, Cambridge (2001)Google Scholar
  23. 23.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  24. 24.
    Cipolla, R., Blake, A.: The dynamic analysis of apparent contours. In: International Conference on Computer Vision, Osaka, Japan, pp. 616–623 (1990)Google Scholar
  25. 25.
    Kolmogorov, V., Zabih, R.: Multi-camera Scene Reconstruction via Graph Cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)Google Scholar
  26. 26.
    Franco, J.S., Boyer, E.: Exact Polyhedral Visual Hulls. In: British Conference on Computer Vision, pp. 329–338 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. Zhong
    • 1
  • W. S. Lau
    • 1
  • W. F. Sze
    • 1
  • Y. S. Hung
    • 1
  1. 1.Department of Electrical and Electronic Engineering, the University of Hong Kong Pokfulam Road, Hong KongChina

Personalised recommendations