Advertisement

Flea, Do You Remember Me?

  • Michael Grabner
  • Helmut Grabner
  • Joachim Pehserl
  • Petra Korica-Pehserl
  • Horst Bischof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)

Abstract

The ability to detect and recognize individuals is essential for an autonomous robot interacting with humans even if computational resources are usually rather limited. In general a small user group can be assumed for interaction. The robot has to distinguish between multiple users and further on between known and unknown persons. For solving this problem we propose an approach which integrates detection, recognition and tracking by formulating all tasks as binary classification problems. Because of its efficiency it is well suited for robots or other systems with limited resources but nevertheless demonstrates robustness and comparable results to state-of-the-art approaches. We use a common over-complete representation which is shared by the different modules. By means of the integral data structure an efficient feature computation is performed enabling the usage of this system for real-time applications such as for our autonomous robot Flea.

Keywords

Face Recognition Recognition Accuracy Object Detection Local Binary Pattern Gesture Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar
  2. 2.
    Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4) (2006)Google Scholar
  4. 4.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision  (2002)Google Scholar
  5. 5.
    Jonsson, K., Kittler, J., Li, Y.P., Matas, J.: Learning support vectors for face verification and recognition. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 208–213. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  6. 6.
    Yang, P., Shan, S., Gao, W., Li, S.: Face recognition using Ada-boosted Gabor features. In: Proceedings Conference on Automatic Face and Gesture Recognition, pp. 356–361 (2004)Google Scholar
  7. 7.
    Avidan, S.: Ensemble tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 494–501 (2005)Google Scholar
  8. 8.
    Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1064–1072 (2004)CrossRefGoogle Scholar
  9. 9.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, vol. 1, pp. 47–56 (2006)Google Scholar
  10. 10.
    Ebbecke, M., Ali, M., Dengel, A.: Real time object detection, tracking and classification in monocular image sequences of road traffic scenes. In: Proceedings International Conference on Image Processing, vol. 2, pp. 402–405 (1997)Google Scholar
  11. 11.
    Hernández, M., Cabrera, J., Dominguez, A., Santana, M.C., Guerra, C., Hernández, D., Isern, J.: Deseo: An active vision system for detection, tracking and recognition, pp. 376–391 (1999)Google Scholar
  12. 12.
    Arandjelovic, O., Zisserman, A.: Automatic face recognition for film character retrieval in feature-length films. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 860–867 (2005)Google Scholar
  13. 13.
    Sivic, J., Everingham, M., Zisserman, A.: Person spotting: Video shot retrieval for face sets. In: Proceedings International Conference on Image and Video Retrieval, pp. 226–236 (2005)Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 511–518 (2001)Google Scholar
  15. 15.
    Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 829–836 (2005)Google Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Tieu, K., Viola, P.: Boosting image retrieval. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 228–235 (2000)Google Scholar
  18. 18.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 260–267 (2006)Google Scholar
  20. 20.
    Oza, N., Russell, S.: Online bagging and boosting. In: Proceedings Artificial Intelligence and Statistics, pp. 105–112 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Grabner
    • 1
  • Helmut Grabner
    • 1
  • Joachim Pehserl
    • 1
  • Petra Korica-Pehserl
    • 1
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and Vision, Graz University of TechnologyAustria

Personalised recommendations