Advertisement

A Multi-Purpose Ontology-Based Approach for Personalised Content Filtering and Retrieval

  • Iván Cantador
  • Miriam Fernández
  • David Vallet
  • Pablo Castells
  • Jérôme Picault
  • Myriam Ribière
Part of the Studies in Computational Intelligence book series (SCI, volume 93)

Summary

Personalised multimedia access aims at enhancing the retrieval process by complementing explicit user requests with implicit user preferences. We propose and discuss the benefits of the introduction of ontologies for an enhanced representation of the relevant knowledge about the user, the context, and the domain of discourse, as a means to enable improvements in the retrieval process and the performance of adaptive capabilities. We develop our proposal by describing techniques in several areas that exemplify the exploitation of the richness and power of formal and explicit semantics descriptions, and the improvements therein. In addition, we discuss how those explicit semantics can be learnt automatically from the analysis of the content consumed by a user, determining which concepts appear to be significant for the user’s interest representation. The introduction of new preferences on the user profile should correspond to heuristics that provide a trade-off between consistency and persistence of the user’s implicit interests.

Keywords

User Preference Domain Ontology User Interest Decay Factor Concept History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badros, G.J. and Lawrence, S.R. (2005). Methods and systems for personalised network searching. US Patent Application 20050131866.Google Scholar
  2. 2.
    Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley, Reading, MA.Google Scholar
  3. 3.
    Balabanovic, M. and Shoham, Y. (1997). Content-based collaborative recommendation. Communications of the ACM 40(3), pp. 66–72.CrossRefGoogle Scholar
  4. 4.
    Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Handschuh, S., Kompatsiaris, Y., Staab, S., and Strintzis, M. G. (2005). Semantic annotation of images and videos for multimedia. Proceedings of the Second European Semantic Web Conference (ESWC 2005), Heraklion, Greece. Springer Verlag Lecture Notes in Computer Science, vol. 3532, pp. 592–607.Google Scholar
  5. 5.
    Block, J. and Funder, D.C. (1986). Social roles and social perception: Individual differences in attribution and “error”. Journal of Personality and Social Psychology 51, pp. 1200–1207.CrossRefGoogle Scholar
  6. 6.
    Bookstein, A. (1983). Outline of a general probabilistic retrieval model. Journal of Documentation 39(2), pp. 63–72.CrossRefGoogle Scholar
  7. 7.
    Cantador, I., Castells, P., and Vallet, D. (2006). Enriching group profiles with ontologies for knowledge-driven collaborative content retrieval. Proceedings of the FirstInternational Workshop on Semantic Technologies in Collaborative Applications (STICA 2006), at the 15th IEEE International Workshops on Enabling Technologies (WETICE 2006), Manchester, UK, pp. 358–363.Google Scholar
  8. 8.
    Cantador, I. and Castells, P. (2006). Multilayered semantic social network modelling by ontology-based user profiles clustering: application to collaborative filtering. Proceedings of the 15th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2006), Podebrady, Czech Republic. Springer Verlag Lectures Notes in Artificial Intelligence, vol. 4248, pp. 334–349.Google Scholar
  9. 9.
    Castells, P., Fernández, M., Vallet, D., Mylonas, P., and Avrithis, Y. (2005). Self-tuning personalised information retrieval in an ontology-based framework. Proceedings of the FirstInternational Workshop on Web Semantics (SWWS 2005), Agia Napa, Cyprus. Springer Verlag Lecture Notes in Computer Science, vol. 3762, pp. 977–986.Google Scholar
  10. 10.
    Castells, P., Fernández, M., and Vallet, D. (2007). An adaptation of the vector-space model for ontology-based information retrieval. IEEE Transactions on Knowledge and Data Engineering 19(2), pp. 261–272.CrossRefGoogle Scholar
  11. 11.
    Cross, V. (2004). Fuzzy semantic distance measures between ontological concepts. IEEE Annual Meeting of the Fuzzy Information, pp. 635–640.Google Scholar
  12. 12.
    Darragh, J.J., Witten, I.H., and James, M.L. (1990). The reactive keyboard: a predictive typing aid. IEEE Computer 23(11), pp. 41–49.Google Scholar
  13. 13.
    Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial Intelligence Review 11, pp. 453–482.CrossRefGoogle Scholar
  14. 14.
    Gauch, S., Chaffee, J., and Pretschner, A. (2003). Ontology-based personalised search and browsing. Web Intelligence and Agent Systems Journal 1(3–4), pp. 219–234.Google Scholar
  15. 15.
    Gauch, S. and Trajkova, J. (2004). Improving ontology-based user profiles, Proceedings of the Recherche d’Informations Assistee par Ordinateur (RIAO 2004), Avignon, France, April 2004, pp. 380–389.Google Scholar
  16. 16.
    Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J. (1999). Combining collaborative filtering with personal agents for better recommendations. Proceedings of the 16th National Conference on Artificial Intelligence (AAAI 1999), Orlando, FL, pp. 439–446.Google Scholar
  17. 17.
    Gruber, T.R. (1993). A translation approach to portable ontology specification. Knowledge Acquisition 5, pp. 199–220.CrossRefGoogle Scholar
  18. 18.
    Hanani, U., Shapira, B., and Shoval, P. (2001). Information filtering: overview of issues, research and systems. User Modeling and User-Adapted Interaction 11(3), pp. 203–259.zbMATHCrossRefGoogle Scholar
  19. 19.
    Hirsh, H., Basu, C., and Davison, B.D. (2000). Enabling technologies: learning to personalize. Communications of the ACM 43(8), pp. 102–106.CrossRefGoogle Scholar
  20. 20.
    Hull, D.A. (1998). The TREC-7 filtering track: description and analysis. Proceedings of the Seventh International Text REtrieval Conference (TREC-7), Gaithersburg, Maryland, pp. 33–56.Google Scholar
  21. 21.
    Jeh, G. and Widom, J. (2003). Scaling personalised web search. Proceedings of the 12th International World Wide Web Conference (WWW 2003), Budapest, Hungary, pp. 271–279.Google Scholar
  22. 22.
    Kim, H. R. and Chan, P.K. (2003). Learning implicit user interest hierarchy for context in personalisation. Proceedings of the Eigth International Conference on Intelligent User Interfaces (IUI 2003), Miami, FL, pp. 101–108.Google Scholar
  23. 23.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., and Ognyanoff, D. (2004). Semantic annotation, indexing, and retrieval. Journal of Web Semantics 2(1), pp. 47–49.Google Scholar
  24. 24.
    Koychev, I. and Schwab, I. (2000). Adaptation to Drifting user’s interests. Proceedings of the Workshop on Machine Learning in New Information Age (MLNet 2000) at the 11th European Conference on Machine Learning (ECML 2000), Barcelona, Spain, pp. 39–45.Google Scholar
  25. 25.
    Koychev, I. and Lothian, R. (2005). Tracking drifting concepts by time window optimisation. Proceedings of AI-2005, the 25th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Bramer, Max; Coenen, Frans; Allen, Tony (Eds.), Springer, London, pp. 46–59.Google Scholar
  26. 26.
    Linden, G., Jacobi, J., and Benson, E. (2001). Collaborative recommendations using item-to-item similarity mappings, US Patent 6266649B1.Google Scholar
  27. 27.
    Masthoff, J. (2004). Group modelling: selecting a sequence of television items to suit a group of viewers. User Modelling and User-Adapted Interaction 14(1), pp. 37–85.CrossRefGoogle Scholar
  28. 28.
    Micarelli, A. and Sciarrone, F. (2004). Anatomy and empirical evaluation of an adaptive web-based information filtering system. User Modelling and User-Adapted Interaction 14(2–3), pp. 159–200.Google Scholar
  29. 29.
    Padmanabhan, V.N. and Mogul, J.C. (1996). Using predictive prefetching to improve World Wide Web latency. Computer Community Review 26(3), pp. 22–36.CrossRefGoogle Scholar
  30. 30.
    Papadogiorgaki, M., Papastathis, V., Nidelkou, E., Waddington, S., Bratu, B., Ribière, M., and Kompatsiaris, Y. (2007). Distributed user profile management and adaptation for personalised news content delivery, submitted to the special issue “Data Mining for Personalisation” of User Modelling and User Adapted Interaction (UMUAI) Journal.Google Scholar
  31. 31.
    Rajagopalan, B. and Deshmukh, A. (2005). Evaluation of online personalisation systems: a survey of evaluation schemes and a knowledge-based approach. Journal of Electronic Commerce Research 6(2), pp. 112–122.Google Scholar
  32. 32.
    Smith B.R., Linden, G.D., and Zada, N.K. (2005). Content personalisation based on actions performed during a current browsing session, US Patent 6853983B2.Google Scholar
  33. 33.
    Song, L., Ma, J., Li, L., and Chen, Z. (2006). Fuzzy similarity from conceptual relations. IEEE Asia-Pacific Conference on Services Computing (APSCC 2006), pp. 3–10.Google Scholar
  34. 34.
    Tsymbal, A. (2004). The problem of concept drift: definitions and related work, Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland.Google Scholar
  35. 35.
    Vallet, D., Castells, P., Fernández, M., Mylonas, P., and Avrithis, Y. (2007). Personalised content retrieval in context using ontological knowledge. IEEE Transactions on Circuits and Systems for Video Technology 17(3), Special Issue on the Convergence of Knowledge EngineeringSemantics and Signal Processing in Audiovisual Information Retrieval, pp. 336–346.CrossRefGoogle Scholar
  36. 36.
    White, R.W., Jose, J.M., van Rijsbergen, C.J., and Ruthven, I. (2004). A simulated study of implicit feedback models. Proceedings of the 26th European Conference on Information Retrieval (ECIR 2004), Sunderland, UK, pp. 311–326.Google Scholar
  37. 37.
    Zamir, O.E., Korn, J.L., Fikes, A.B., and Lawrence, S.R. (2005). Personalisation of placed content ordering in search results. US Patent Application 20050240580.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Iván Cantador
    • 1
  • Miriam Fernández
    • 1
  • David Vallet
    • 1
  • Pablo Castells
    • 1
  • Jérôme Picault
    • 2
  • Myriam Ribière
    • 2
  1. 1.Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.Parc Les AlgorithmesMotorola LabsGif-sur-YvetteFrance

Personalised recommendations