On-the-Fly Stuttering in the Construction of Deterministic ω-Automata

  • Joachim Klein
  • Christel Baier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4783)


We propose to use the knowledge that an ω-regular property is stutter insensitive to construct potentially smaller deterministic ω-automata for such a property, e.g. using Safra’s determinization construction. This knowledge allows us to skip states that are redundant under stuttering, which can reduce the size of the generated automaton. In order to use this technique even for automata that are not completely insensitive to stuttering, we introduce the notion of partial stutter insensitiveness and apply our construction only on the subset of symbols for which stuttering is allowed. We evaluate the benefits of this heuristic in practice using multiple sets of benchmark formulas.


stuttering LTL determinization Rabin deterministic ω-automaton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas, W.: Languages, automata, and logic. Handbook of formal languages 3, 389–455 (1997)Google Scholar
  2. 2.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  3. 3.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  4. 4.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer Society Press, Los Alamitos (1977)Google Scholar
  6. 6.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)Google Scholar
  7. 7.
    Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11, 125–155 (1998)CrossRefGoogle Scholar
  8. 8.
    Vardi, M.: Probabilistic linear-time model checking: An overview of the automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theoretical Computer Science 363, 182–195 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel (1989)Google Scholar
  11. 11.
    Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time analysis of reactive systems. In: QEST, pp. 131–132. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  12. 12.
    Lamport, L.: What Good is Temporal Logic? In: IFIP Congress, pp. 657–668 (1983)Google Scholar
  13. 13.
    Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE, pp. 197–211. Chapman & Hall, Sydney, Australia (1994)Google Scholar
  14. 14.
    Valmari, A.: A stubborn attack on state explosion. Formal Methods in System Design 1, 297–322 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic branching time. Electr. Notes Theor. Comput. Sci. 153, 97–116 (2006)CrossRefGoogle Scholar
  16. 16.
    Etessami, K.: Stutter-invariant languages, omega-automata, and temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. Inf. Process. Lett. 63, 243–246 (1997)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Peled, D., Wilke, T., Wolper, P.: An Algorithmic Approach for Checking Closure Properties of Temporal Logic Specifications and omega-Regular Languages. Theor. Comput. Sci. 195, 183–203 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Holzmann, G., Kupferman, O.: Not checking for closure under stuttering. In: Proceedings of the 2nd International Workshop on the SPIN Verification System, DIMCAS, pp. 163–169 (1996)Google Scholar
  20. 20.
    Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant LTL. Inf. Process. Lett. 75, 261–263 (2000)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joachim Klein
    • 1
  • Christel Baier
    • 1
  1. 1.Institute of Theoretical Computer Science, Dresden University of Technology, 01062 DresdenGermany

Personalised recommendations