Advertisement

Genes, Synapses and Autism Spectrum Disorders

  • Thomas Bourgeron
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)

Abstract

Autism spectrum disorders (ASD) can be the consequences of genetic anomalies affecting distinct physiological processes such as chromatin remodeling (MECP2), synaptic gene regulation (FMRP), actin skeleton dynamics (TSC1/TSC2, NF1), cell growth (PTEN) and calcium signaling (CACNA1C). Although the causative genes are numerous and diverse, they might all interfere with a more restricted number of downstream pathways at the origin of ASD. One such pathway includes the synaptic cell adhesion molecules, NLGN3, NLGN4X, and NRXN1, and a postsynaptic scaffolding protein, SHANK3. This protein complex was shown to be crucial for maintaining functional synapses as well as the adequate balance between neuronal excitation and inhibition. In this review, we report genetic and neurobiological findings that highlight the major role of synaptic genes in the susceptibility to ASD. Based on these pieces of evidence, we propose that future studies should include the modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.

Keywords

Autism Spectrum Disorder Autism Spectrum Disorder Tuberous Sclerosis Asperger Syndrome Rett Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APA (1994) Diagnostic and statistical manual of mental disorders, Fourth Edition, APA, Washington, DC.Google Scholar
  2. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77.PubMedCrossRefGoogle Scholar
  3. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368:210–215.PubMedCrossRefGoogle Scholar
  4. Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21:37–46.PubMedCrossRefGoogle Scholar
  5. Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, Lamb J, Bailey AJ, Monaco AP International Molecular Genetics Study of Autism Consortium (2005) Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Human Genet 76:950–966.CrossRefGoogle Scholar
  6. Belmonte MK, Bourgeron T (2006) Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neurosci 9:1221–1225.PubMedCrossRefGoogle Scholar
  7. Blasi F, Bacchelli E, Pesaresi G, Carone S, Bailey AJ, Maestrini E (2006) Absence of coding mutations in the X-linked genes neuroligin 3 and neuroligin 4 in individuals with autism from the IMGSAC collection. Am J Med Genet B Neuropsychiatr Genet 141:220–221.PubMedGoogle Scholar
  8. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED (2002) ProSAP/Shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem 81:903–910.PubMedCrossRefGoogle Scholar
  9. Chih B, Afridi SK, Clark L, Scheiffele P (2004) Disorder-associated mutations lead to functional inactivation of neuroligins. Human Mol Genet 13:1471–1477.CrossRefGoogle Scholar
  10. Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51:171–178.PubMedCrossRefGoogle Scholar
  11. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Südhof TC (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54:919–931.PubMedCrossRefGoogle Scholar
  12. Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (2004) The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24:4889–4893.PubMedCrossRefGoogle Scholar
  13. Comoletti D, Flynn RE, Boucard AA, Demeler B, Schirf V, Shi J, Jennings LL, Newlin HR, Südhof TC, Taylor P (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. Biochemistry 45:12816–12827.PubMedCrossRefGoogle Scholar
  14. Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol17:43–52.Google Scholar
  15. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nature Neurosci 6:708–716.PubMedCrossRefGoogle Scholar
  16. Dudanova I, Tabuchi K, Rohlmann A, Sudhof TC, Missler M (2007) Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol 502:261–274.PubMedCrossRefGoogle Scholar
  17. Durand CM, Betancur C, Boeckers TM. Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature genetics 39:25–27.CrossRefGoogle Scholar
  18. Fombonne E (2005) Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psych 66 (Suppl 10):3–8.Google Scholar
  19. Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psych 12:2–22.CrossRefGoogle Scholar
  20. Frith U (1998) Cognitive deficits in developmental disorders. Scand J Psychol 39:191–195.PubMedCrossRefGoogle Scholar
  21. Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L, Fombonne E, Joober R, Rouleau GA (2005) NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population. Am J Med Genet B Neuropsychiatr Genet 132:74–75.PubMedGoogle Scholar
  22. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026.PubMedCrossRefGoogle Scholar
  23. Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26:4256–4265.PubMedCrossRefGoogle Scholar
  24. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147.PubMedCrossRefGoogle Scholar
  25. Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci USA 104:11489–11494.PubMedCrossRefGoogle Scholar
  26. Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, Amiel J, Le Merrer M, Heron D, de Blois MC, Prieur M, Vekemans M, Carter NP, Munnich A, Colleaux L, Philippe A (2006) Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet 43:843–849.PubMedCrossRefGoogle Scholar
  27. Jamain S, Betancur C, Quach H, Philippe A, Fellous M, Giros B, Gillberg C, Leboyer M, Bourgeron T (2002) Linkage and association of the glutamate receptor 6 gene with autism. Mol Psych 7:302–310.CrossRefGoogle Scholar
  28. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet 34:27–29.PubMedCrossRefGoogle Scholar
  29. Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250.Google Scholar
  30. Kim SA, Kim JH, Park M, Cho IH, Yoo HJ (2007) Family-based association study between GRIK2 polymorphisms and autism spectrum disorders in the Korean trios. Neurosci Res 58: 332–335.PubMedCrossRefGoogle Scholar
  31. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BC, Andres C, Barthélémy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Human Genet 74:552–557.CrossRefGoogle Scholar
  32. Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, Enns GM, Hoyme HE (2004) Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 114:451–457.PubMedCrossRefGoogle Scholar
  33. Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N (2004) The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 47:724–733.PubMedCrossRefGoogle Scholar
  34. Miles JH, Hillman RE (2000) Value of a clinical morphology examination in autism. Am J Med Genet 91:245–253.PubMedCrossRefGoogle Scholar
  35. Missler M (2003) Synaptic cell adhesion goes functional. Trends in neurosciences 26:176–178.PubMedCrossRefGoogle Scholar
  36. Motazacker M, Rost BR, Hucho T et al. (2007) A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Human Genet, in press.Google Scholar
  37. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci USA 101:13915–13920.PubMedCrossRefGoogle Scholar
  38. Premak J, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 4:515–526.CrossRefGoogle Scholar
  39. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669.PubMedCrossRefGoogle Scholar
  40. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449.PubMedCrossRefGoogle Scholar
  41. Shaywitz SE, Shaywitz BA, Fletcher JM, Escobar MD (1990) Prevalence of reading disability in boys and girls. Results of the Connecticut Longitudinal Study. JAMA 264:998–1002.PubMedCrossRefGoogle Scholar
  42. Shuang M, Liu J, Jia MX, Yang JZ, Wu SP, Gong XH, Ling YS, Ruan Y, Yang XL, Zhang D (2004) Family-based association study between autism and glutamate receptor 6 gene in Chinese Han trios. Am J Med Genet B Neuropsychiatr Genet 131:48–50.PubMedCrossRefGoogle Scholar
  43. Strutz-Seebohm N, Korniychuk G, Schwarz R, Baltaev R, Ureche ON, Mack AF, Ma ZL, Hollmann M, Lang F, Seebohm G (2006) Functional significance of the kainate receptor GluR6(M836I) mutation that is linked to autism. Cell Physiol Biochem 18:287–294.PubMedCrossRefGoogle Scholar
  44. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L, Feuk L, Qian C, Bryson SE, Jones MB, Marshall CR, Scherer SW, Vieland VJ, Bartlett C, Mangin LV, Goedken R, Segre A, Pericak-Vance MA, Cuccaro ML, Gilbert JR, Wright HH, Abramson RK, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum JD, Davis KL, Hollander E, Silverman JM, Hallmayer J, Lotspeich L, Sutcliffe JS, Haines JL, Folstein SE, Piven J, Wassink TH, Sheffield V, Geschwind DH, Bucan M, Brown WT, Cantor RM, Constantino JN, Gilliam TC, Herbert M, Lajonchere C, Ledbetter DH, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse CA, Spence S, State M, Tanzi RE, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon WM, Minshew N, Munson J, Korvatska E, Rodier PM, Schellenberg GD, Smith M, Spence MA, Stodgell C, Tepper PG, Wijsman EM, Yu CE, Rogé B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck SM, Schuster C, Poustka F, Bölte S, Feineis-Matthews S, Herbrecht E, Schmötzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F, Langemeijer M, Hijimans C, Staal WG, Baird G, Bolton PF, Rutter ML, Weisblatt E, Green J, Aldred C, Wilkinson JA, Pickles A, Le Couteur A, Berney T, McConachie H, Bailey AJ, Francis K, Honeyman G, Hutchinson A, Parr JR, Wallace S, Monaco AP, Barnby G, Kobayashi K, Lamb JA, Sousa I, Sykes N, Cook EH, Guter SJ, Leventhal BL, Salt J, Lord C, Corsello C, Hus V, Weeks DE, Volkmar F, Tauber M, Fombonne E, Shih A (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genet 39:319–328.PubMedCrossRefGoogle Scholar
  45. Talebizadeh Z, Lam DY, Theodoro MF, Bittel DC, Lushington GH, Butler MG (2006) Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J Med Genet 43:e21.PubMedCrossRefGoogle Scholar
  46. Tomblin JB, Records NL, Buckwalter P, Zhang X, Smith E, O’Brien M (1997) Prevalence of specific language impairment in kindergarten children. J Speech Lang Hear Res 40:1245–1260.PubMedGoogle Scholar
  47. Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358.PubMedCrossRefGoogle Scholar
  48. Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456.PubMedCrossRefGoogle Scholar
  49. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754.PubMedCrossRefGoogle Scholar
  50. Vincent JB, Kolozsvari D, Roberts WS, Bolton PF, Gurling HM, Scherer SW (2004) Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands. Am J Med Genet B Neuropsychiatr Genet 129B:82–84.CrossRefPubMedGoogle Scholar
  51. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psych 11:1, 18–28.CrossRefGoogle Scholar
  52. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J, Bockholt A, Jones IR, Craddock N, Cook EH Jr, Vicente A, Sommer SS (2004) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psych 10: 329–32.CrossRefGoogle Scholar
  53. Ylisaukko-oja T, Rehnstrom K, Auranen M, Vanhala R, Alen R, Kempas E, Ellonen P, Turunen JA, Makkonen I, Riikonen R, Nieminen-von Wendt T, von Wendt L, Peltonen L, Järvelä I (2005) Analysis of four neuroligin genes as candidates for autism. Eur J Human Genet 13:1285–1292.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Bourgeron
    • 1
  1. 1.Institut PasteurUniversité Denis Diderot Paris 7ParisFrance

Personalised recommendations