Advertisement

Towards a Semantic Spatial Model for Pedestrian Indoor Navigation

  • Edgar-Philipp Stoffel
  • Bernhard Lorenz
  • Hans Jürgen Ohlbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4802)

Abstract

This paper presents a graph-based spatial model which can serve as a reference for guiding pedestrians inside buildings. We describe a systematic approach to construct the model from geometric data. In excess of the well-known topological relations, the model accounts for two important aspects of pedestrian navigation: firstly, visibility within spatial areas and, secondly, generating route descriptions. An algorithm is proposed which partitions spatial regions according to visibility criteria. It can handle simple polygons as encountered in floor plans. The model is structured hierarchically - each of its elements corresponds to a certain domain concept (‘room’, ‘door’, ‘floor’ etc.) and can be annotated with meta information. This is useful for applications in which such information have to be evaluated.

Keywords

Spatial Region Boundary Node Region Graph Path Query Route Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, C., Dürr, F.: On location models for ubiquitous computing. Personal Ubiquitous Comput. 9(1), 20–31 (2005)CrossRefGoogle Scholar
  2. 2.
    Choset, H., Burdick, J.: Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph. International Journal of Robotics Research 19(2), 96–125 (2000)CrossRefGoogle Scholar
  3. 3.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Visibility Graphs: Finding the Shortest Route. In: Computational Geometry: Algorithms and Applications, ch. 15, pp. 307–317. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. International Journal of Geographical Information Systems 5, 161–174 (1991)CrossRefGoogle Scholar
  5. 5.
    Franz, G., Mallot, H., Wiener, J.: Graph-based Models of Space in Architecture and Cognitive Science - a Comparative Analysis. In: Proceedings of the 17th International Conference on Systems Research, Informatics and Cybernetics, pp. 30–38 (2005)Google Scholar
  6. 6.
    Gilliéron, P.-Y., Merminod, B.: Personal Navigation System for Indoor Applications. In: Proceedings of the 11th IAIN World Congress on Smart Navigation, Systems and Services, Berlin (2003)Google Scholar
  7. 7.
    Hendricks, M.D., Egenhofer, M.J., Hornsby, K.: Structuring a Wayfinder’s Dynamic Space-Time Environment. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 75–92. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Hu, H., Lee, D.L.: Semantic Location Modeling for Location Navigation in Mobile Environment. In: Proceedings of the 5th IEEE International Conference on Mobile Data Management, pp. 52–61. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  9. 9.
    Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical Encoded Path Views for Path Query Processing: An Optimal Model and Its Performance Evaluation. Knowledge and Data Engineering 10(3), 409–432 (1998)CrossRefGoogle Scholar
  10. 10.
    Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., Savelli, F.: Local metrical and global topological maps in the Hybrid Spatial Semantic Hierarchy. In: Proceedings of the IEEE International Conference on Robotics and Automation. ICRA, vol. 5, pp. 4845–4851. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  11. 11.
    Lefebvre, S., Hornus, S.: Automatic cell-and-portal decomposition. Technical Report 4898, INRIA (July 2003)Google Scholar
  12. 12.
    Lorenz, B., Ohlbach, H.J., Stoffel, E.-P.: A Hybrid Spatial Model for Representing Indoor Environments. In: Carswell, J.D., Tezuka, T. (eds.) W2GIS 2006. LNCS, vol. 4295, pp. 102–112. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Ohlbach, H.J., Rosner, M., Lorenz, B., Stoffel, E.-P.: NL Navigation Commands from Indoor WLAN fingerprinting position data. In: REWERSE Deliverable A1-D7 (2006), http://rewerse.net
  14. 14.
    Plümer, L., Gröger, G.: Nested Maps – a Formal, Provably Correct Object Model for Spatial Aggregates. In: Proceedings of the 4th ACM International Workshop on Advances in Geographic Information Systems, pp. 76–83. ACM Press, New York (1996)CrossRefGoogle Scholar
  15. 15.
    Poulovassilis, A., Levene, M.: A Nested-Graph Model for the Representation and Manipulation of Complex Objects. ACM Trans. Inf. Syst. 12(1), 35–68 (1994)CrossRefGoogle Scholar
  16. 16.
    Raubal, M., Worboys, M.: A Formal Model of the Process of Wayfinding in Built Environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–401. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Rüetschi, U.-J., Timpf, S.: Using Image Schemata to Represent Meaningful Spatial Configurations. In: Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. LNCS, vol. 3762, pp. 1047–1055. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Shekhar, S., Fetterer, A., Goyal, B.: Materialization Trade-Offs in Hierarchical Shortest Path Algorithms. In: Symposium on Large Spatial Databases, pp. 94–111 (1997)Google Scholar
  19. 19.
    Stahl, C., Haupert, J.: Taking Location Modelling to New Levels: A Map Modelling Toolkit for Intelligent Environments. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 74–85. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Tsetsos, V., Anagnostopoulos, C., Kikiras, P., Hadjiefthymiades, S.: Semantically enriched navigation for indoor environments. International Journal of Web and Grid Services 2(4), 453–478 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Edgar-Philipp Stoffel
    • 1
  • Bernhard Lorenz
    • 1
  • Hans Jürgen Ohlbach
    • 1
  1. 1.University of Munich, Oettingenstr. 67, 80538 MunichGermany

Personalised recommendations