Fuzzy Project Scheduling/PERT

  • James J. Buckley
  • Leonard J. Jowers
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 222)

Introduction

PERT stands for “Project Evaluation and Review Technique”. A project defines a combination of interrelated activities (jobs) that must be completed in a certain order before the entire project can be completed. The project that we will concentrate on in this chapter is shown in Figure 26.1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnal, P., Gourc, D., Lacoste, G.: Where Do We Stand with Fuzzy Project Scheduling? J. Construction Engineering and Management 130, 114–123 (2004)CrossRefGoogle Scholar
  2. 2.
    Buckley, J.J.: Fuzzy PERT. In: Evans, G.W., Karwowski, W., Wilhelm, M.R. (eds.) Applications of Fuzzy Set Methodologies in Industrial Engineering, pp. 103–114. Elsevier Science, Amsterdam (1989)Google Scholar
  3. 3.
    Chanas, S., Kamburowski, J.: The Use of Fuzzy Variables in PERT. Fuzzy Sets and Systems 5, 11–19 (1981)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chanas, S., Zielinski, P.: Critical Path Analysis in a Network with Fuzzy Activity Times. Fuzzy Sets and Systems 122, 195–204 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chanas, S., Zielinski, P.: The Computational Complexity of the Interval Critical Path Method. European J. Operational Research 136, 541–550 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, S.-P.: Analysis of Critical Paths in a Project Network with Fuzzy Activity Times. European J. Operational Research 183, 259–442 (2007)Google Scholar
  7. 7.
    Davis, E.W., Moder, J.J., Phillps, C.R.: Project Management with CPM, PERT and Precedence Diagramming, 3rd edn. Van Nostrand Reinhold, N.Y. (1983)Google Scholar
  8. 8.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy Scheduling: Modelling Flexible Constraints vs. Coping with Incomplete Knowledge. European J. Operational Research 147, 231–252 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fargier, H., Galvagnon, V., Dubois, D.: Fuzzy PERT in Series-Parallel Graphs. In: Proc. FUZZ-IEEE 2000, San Antonio, Texas, May 7-10, 2000, pp. 717–722 (2000)Google Scholar
  10. 10.
    Guiffrida, A.L., Nagi, R.: Fuzzy Set Theory Applications in Production Management Research: A Literature Survey. J. Intelligent Manufacturing 9, 39–56 (1998)CrossRefGoogle Scholar
  11. 11.
    Lin, F.-T., Yao, J.-S.: Fuzzy Critical Path Method Based on Signed-Difference Ranking and Statistical Confidence-Interval Estimates. J. Supercomputing 24, 305–325 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Nasution, S.H.: Techniques and Applications of Fuzzy Theory to Critical Path Methods. In: Leondes, C. (ed.) Fuzzy Theory Systems: Techniques and Applications, vol. 4, pp. 1561–1597. Academic Press, San Diego, Cal. (1999)Google Scholar
  13. 13.
    Taha, H.A.: Operations Research, 5th edn. MacMillan, N.Y. (1992)MATHGoogle Scholar
  14. 14.
    Yao, J.-S., Lin, F.T.: Fuzzy Critical Path Method Based on Signed Distance Ranking of Fuzzy Numbers. IEEE Trans. Systems, Man and Cybernetics, Series A 30, 76–82 (2000)CrossRefGoogle Scholar
  15. 15.
    Yao, J.-S., Lin, F.T.: Corrections to “Fuzzy Critical Path Method Based on Signed Distance Ranking of Fuzzy Numbers”. IEEE Trans. Systems, Man and Cybernetics, Series A 30, 230 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James J. Buckley
    • 1
  • Leonard J. Jowers
    • 2
  1. 1.Mathematics Department University of Alabama at Birmingham Birmingham, AL 35294USA
  2. 2.Department of Computer and Information Sciences University of Alabama at Birmingham Birmingham, AL 35294USA

Personalised recommendations