The Ecology of Social Evolution in Termites

  • Judith Korb

Termites (Isoptera) belong to the classical eusocial insects and their resemblance to ant colonies is so striking that they are commonly known as ‘white ants’. However, the termites evolved social life independently, long before the ants. Their different ancestry also is reflected in several fundamental differences in the organization of the colonies. This chapter aims at summarizing the state-of-the-art in termite research and comparing the results with other social invertebrate and vertebrate systems in an attempt to reveal common principles underlying social evolution. First, I provide an overview of termites’ biology and classification. I continue with a summary on the ‘hunt’ for a genetical explanation of the evolution of termite’ eusociality. Using a case study, I summarize ecological factors favoring cooperation in a lower termite and show the relevance of these results for other termite species. Based on these results I outline the potential evolutionary transitions in termite eusociality. Finally, I compare the driving forces in termites with those in cooperatively breeding vertebrates and offer a potential explanation why eusociality rarely evolved in vertebrates, despite often strikingly similar ecological pressures in both groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125-148Google Scholar
  2. Abe T (1990) Evolution of the worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environments. Oxford & IBH, New Delhi, pp 29-30Google Scholar
  3. Abe T, Darlington JPEC (1985) Distribution and abundance of a mound-building termite, Macrotermes michaelseni, with special reference to its subterranean colonies and ant preda-tors. Physiol Ecol Jpn 22:59-74Google Scholar
  4. Arnold KE, Owens IPF (1998) Cooperative breeding in birds: a comparative analysis of the life-history hypothesis. Proc R Soc Lond Ser B 265:739-745CrossRefGoogle Scholar
  5. Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131-1136CrossRefGoogle Scholar
  6. Bartz SJ (1979) Evolution of eusociality in termites. Proc Natl Acad Sci USA 76:5764-5768PubMedCrossRefGoogle Scholar
  7. Bignell DE, Eggleton P (2000) Termites in ecosystem. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363-388Google Scholar
  8. Bodot P (1961) La destruction des termitiéres de Bellicositermes natalensis par une fourmi: Dorylus (Typhlopone) dentifons Wasman. C R Acad Sci 253:3053-3054Google Scholar
  9. Boland CRJ, Heinsohn R, Cockburn A (1997) Experimental manipulation of brood reduction and parental care in cooperatively breeding white-winged choughs. J Anim Ecol 66:683-691CrossRefGoogle Scholar
  10. Bourke ARG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton Brown JL (1987) Helping and communal breeding in birds. Princeton University Press, PrincetonGoogle Scholar
  11. Buchli HR (1958) L’origine des castes et les potentialités ontogéniques des termites européens du genre Reticulitermes Holmgren. Ann Sci Nat Zool 11:267-429Google Scholar
  12. Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236-243CrossRefGoogle Scholar
  13. Clement J-L (1986) Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographical and seasonal variations. Sociobiology 11:311-323Google Scholar
  14. Crozier RH, Luykx PD (1985) The evolution of termite eusociality is unlikely to have been based on a haplodiploid analogy. Am Nat 126:867-869CrossRefGoogle Scholar
  15. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, OxfordGoogle Scholar
  16. Darlington JPEC (1979) Populations of nests of Macrotermes species in Kajiado and Bissell. Annual Report of the International Centre of Insect Physiology and Ecology 6:22-23Google Scholar
  17. Darlington JPEC (1986) Attacks by doryline ants and termite nest defences (Hymenoptera; Formicidae; Isoptera; Termitidae). Sociobiology 11:189-200Google Scholar
  18. Darlington JPEC, Zimmermann PR, Wandiga SO (1992) Populations in nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 8:73-85CrossRefGoogle Scholar
  19. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13: 431-441PubMedCrossRefGoogle Scholar
  20. Deshmukh I (1989) How important are termites in the production ecology of African savannas? Sociobiology 15:155-168Google Scholar
  21. Dunn PO, Cockburn A, Mulder RA (1995) Fairy-wren helpers often care for young to which they are unrelated. Proc R Soc London Ser B 259:339-343CrossRefGoogle Scholar
  22. Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25-52Google Scholar
  23. Eggleton P (2001) Termites and trees: a review of recent advances in termite phylogenetics. Insectes Soc 48:187-193CrossRefGoogle Scholar
  24. Emlen ST (1991) Evolution of cooperative breeding in birds and mammals. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 301-337Google Scholar
  25. Emlen ST (1997) Predicting family dynamics in social vertebrates. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific, Oxford, pp 228-353Google Scholar
  26. Evans TA, Lai JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M (2005) Termite assess wood size by using vibration signals. Proc Natl Acad Sci USA 102:3732-3737PubMedCrossRefGoogle Scholar
  27. Gerber C, Badertscher S, Leuthold RH (1988) Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc 35:226-240CrossRefGoogle Scholar
  28. Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70-83PubMedGoogle Scholar
  29. Gotwald WH (1995) Army ants: the biology of social predation. Cornell University Press, CornellGoogle Scholar
  30. Grandcolas P (1994) Phylogenetic systematics of the subfamily Polyphaginae, with the assign-ment of Cryptocercus Scudderm 1862 to this taxon (Blattaria, Blaberoidea, Polyphagidae). Syst Entomol 19:145-158Google Scholar
  31. Grandcolas P, D’Haese C (2002) The origin of a ‘true’ worker caste in termites: phylogenetic evi-dence is not decisive. J Evol Biol 15:885-888CrossRefGoogle Scholar
  32. Grassé PP, Noirot C (1947) Le polymorphisme social du termite a cou jaune (Kalotermes flavicol-lis F.). Les faux-ouvriers ou pseudergates et les mues regressives. Compt Rend Acad Sci 214:219-221Google Scholar
  33. Grassé PP (1984) Termitologia, vol. 2. Masson, ParisGoogle Scholar
  34. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92-98CrossRefGoogle Scholar
  35. Hahn PD, Stuart AM (1987) Sibling interactions in two species of termites: a test of the haplodip-loid analogy (Isoptera: Kalotermitidae; Rhinotermitidae). Sociobiology 13:83-92Google Scholar
  36. Hamilton WD (1964) The genetic evolution of social behavior I, II. J Theoret Biol 7:1-52CrossRefGoogle Scholar
  37. Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Ann Rev Ecol Syst 3:192-232CrossRefGoogle Scholar
  38. Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578-581CrossRefGoogle Scholar
  39. Hatchwell BJ, Komdeur J (2000) Ecological constraints, life-history traits and the evolution of cooperative breeding. Anim Behav 59:1079-1086PubMedCrossRefGoogle Scholar
  40. Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199-216Google Scholar
  41. Heinsohn R, Legge S (1999) The cost of helping. Trends Ecol Evol 14:53-57PubMedCrossRefGoogle Scholar
  42. Henderson G (1998) Primer pheromones and possible soldier caste influence on the evolution of sociality in lower termites. In: Vandermeer R, Breed KMD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 314-330Google Scholar
  43. Hennig W (1981) Insect phylogeny. Wiley, New YorkGoogle Scholar
  44. Higashi M, Yamamura N, Abe T, Burns TP (1991) Why don’t all termite species have a sterile worker caste? Proc R Soc Lond Ser B 246:25-30CrossRefGoogle Scholar
  45. Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 169-187Google Scholar
  46. Husseneder C, Brandl R, Epplen JT, Kaib M (1999) Within colony relatedness in a termite spe-cies: genetic roads to eusociality? Behaviour 136:1045-1063CrossRefGoogle Scholar
  47. Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylo-genetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331-335PubMedCrossRefGoogle Scholar
  48. Inward D, Vogler AP, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phyl Evol 44:953-967CrossRefGoogle Scholar
  49. eon J, Choe JC (2003) Reproductive skew and sterile castes. Am Nat 161:206-224CrossRefGoogle Scholar
  50. Johnstone RA (2000) Models of reproductive skew: a review and synthesis. Ethology 106:5-26CrossRefGoogle Scholar
  51. Kambhampati S (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc Natl Acad Sci USA 92:2017-2020PubMedCrossRefGoogle Scholar
  52. Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1-23Google Scholar
  53. Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9:98-102CrossRefGoogle Scholar
  54. Klass K-D (1995) Die Phylogenie der Dictyoptera. PhD Thesis, Fakultät für Biologie, Ludwig Maximilians Universität München, MünchenGoogle Scholar
  55. Koenig WD, Pitelka FA, Carmen WJ, Mumme RL, Stanback MT (1992) The evolution of delayed dispersal in cooperative breeders. Q Rev Biol 67:111-150PubMedCrossRefGoogle Scholar
  56. Kokko H, Lundberg P (2001) Dispersal, migration, and offspring retention in saturated habitats. Am Nat 157:188-202PubMedCrossRefGoogle Scholar
  57. Kokko H, Ekman J (2002) Delayed dispersal as a route to breeding: territorial inheritance, safe havens, and ecological constraints. Am Nat 160:468-484PubMedCrossRefGoogle Scholar
  58. Kokko H, Johnstone RA, Wright J (2002) The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav Ecol 13:291-300CrossRefGoogle Scholar
  59. Korb J (1997) Lokale und regionale Verbreitung von Macrotermes bellicosus (Isoptera; Macrotermitinae): Stochastik oder Deterministik? W&T Verlag, BerlinGoogle Scholar
  60. Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212-219PubMedGoogle Scholar
  61. Korb J (2005) Regulation of sexual development in the basal termite Cryptotermes secundus: mutilation, pheromonal manipulation or honest signal? Naturwissenschaften 92:45-49PubMedCrossRefGoogle Scholar
  62. Korb J (2006) Limited food induces nepotism in drywood termites. Biol Lett 2:364-366PubMedCrossRefGoogle Scholar
  63. Korb J (2007) Workers of a drywood termite do not work. Frontiers Zool 4:7 Korb J (in press) Termites. Curr Biol: in pressGoogle Scholar
  64. Korb J, Fuchs A (2006) Termites and mites - adaptive behavioural responses to infestation? Behaviour 143:891-907CrossRefGoogle Scholar
  65. Korb J, Heinze J (2004) Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291-304PubMedCrossRefGoogle Scholar
  66. Korb J, Katrantzis S (2004) Influence of environmental conditions on the expression of the sexual dispersal phenotype in a lower termite: implications for the evolution of workers in termites. Evol Dev 6:342-352PubMedCrossRefGoogle Scholar
  67. Korb J, Lenz M (2004) Reproductive decision-making in the termite Cryptotermes secundus (Kalotermitidae) under variable food conditions. Behav Ecol 15:390-395CrossRefGoogle Scholar
  68. Korb J, Linsenmair KE (1999) Reproductive success of Macrotermes bellicosus (Isoptera, Macrotermitinae) in two neighbouring habitats. Oecologia 118:183-191CrossRefGoogle Scholar
  69. Korb J, Linsenmair KE (2001) The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127:324-333CrossRefGoogle Scholar
  70. Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food condi-tions. Behav Evol Sociobiol 56:89-95CrossRefGoogle Scholar
  71. Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower ter-mite? Evol Ecol 27:817-828CrossRefGoogle Scholar
  72. Kristensen NP (1991) Phylogeny of extant hexapods. In: The insects of Australia. CSIRO & Melbourne University Press, Carleton, pp 125-140Google Scholar
  73. Lacy RC (1980) The evolution of eusociality in termites: a haplodiploid analogy? Am Nat 116:449-451CrossRefGoogle Scholar
  74. La Fage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brain MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 165-232Google Scholar
  75. Leinaas HP (1983) A haplodiploid analogy in the evolution of termite eusociality? reply to Lacy. Am Nat 121:302-304CrossRefGoogle Scholar
  76. Lenz M (1976) The dependence of hormone effects in termite caste determination on external factors. In: Lüscher M (ed) Phase and caste determination in insects: endocrine aspects. Pergamon Press, Oxford, pp 73-89Google Scholar
  77. Lenz M (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 159-209Google Scholar
  78. Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 333-362Google Scholar
  79. Leponce M, Roisin Y, Pasteels JM (1997) Structure and dynamics of the arboreal termite commu-nity in New Guinean coconut plantations. Biotropica 29:193-203CrossRefGoogle Scholar
  80. Levieux J (1983) Feeding strategies of ants in different West African savannas. In: Jaisson P (ed) Social insects in the tropics, vol.2. Université de Paris-Nord, Paris, pp 245-252Google Scholar
  81. Lo N, Kitade O, Miura T, Constantino R, Matsumoto T (2004) Molecular phylogeny of the Rhinotermitidae. Insectes Soc 51:365-371CrossRefGoogle Scholar
  82. Longhurst C, Howse PE (1979) Foraging, recruitment and emigration in Megaponera foetens (Fab.) (Hym., Formicidae) from the Nigerian Guinea savanna. Insectes Soc 26:204-215CrossRefGoogle Scholar
  83. Longhurst C, Baker R, Howse PE (1979) Termite predation by Megaponera foetens (Fab.) (Hymenoptera: Formicidae): coordination of raids by glandular secretions. J Chem Ecol 5:703-719CrossRefGoogle Scholar
  84. Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694-739Google Scholar
  85. Luykx PD, Syren RM (1979) The cytogenetics of Incisitermes schwarzi and other Florida ter-mites. Sociobiology 4:191-209Google Scholar
  86. Lys JA, Leuthold RH (1991) Task-specific distribution of the two worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): observation of behaviour during food acquisition. Insectes Soc 38:161-170CrossRefGoogle Scholar
  87. Magrath RD, Whittingham LA (1997) Subordinate males are more likely to help if unrelated to the breeding female in cooperatively breeding white-browed scrubwrens. Behav Ecol Sociobiol 41:185-192CrossRefGoogle Scholar
  88. Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145-1147CrossRefGoogle Scholar
  89. Miller LR, Paton R (1983) Cryptotermes in mangroves in the Northern Territory (Isoptera: Kalotermitidae). J Aust Ent Soc 22:189-190CrossRefGoogle Scholar
  90. Myles TG (1986) Evidence of parental and-or sibling manipulation in three species of termites in Hawaii USA Isoptera. Proc Hawaiian Ento Soc 27:129-140Google Scholar
  91. Myles TG (1988) Resource inheritance in social evolution from termite to man. In: Slobodchikoff CN (ed) The ecology of social behavior. Academic Press, New York, pp 379-423Google Scholar
  92. Myles TG, Nutting WL (1988) Termite eusocial evolution: a re-examination of Bartz’s hypothesis and assumptions. Q Rev Biol 63:1-24CrossRefGoogle Scholar
  93. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1-88Google Scholar
  94. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57-104Google Scholar
  95. Nalepa CA, Bandi C (2000) Characterizing the ancestors: a paedomorphosis and termite evolu-tion. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecol-ogy. Kluwer Academic Publishers, Dordrecht, pp 53-75Google Scholar
  96. Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9-18PubMedCrossRefGoogle Scholar
  97. Noirot C (1990) Sexual castes and reproductive strategies in termites. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin Heidelberg New York, pp 5-35Google Scholar
  98. Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121-140Google Scholar
  99. Noirot C, Pasteels JM (1987) Ontogenetic development and the evolution of the worker caste in termites. Experientia 43:851-860CrossRefGoogle Scholar
  100. Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol. I. Academic Press, New York, pp 233-282Google Scholar
  101. Parmentier D (2006) Developmental flexibility and evolution of the worker caste in termites. PhD Thesis, Université Libre de BruxellesGoogle Scholar
  102. Parmentier D, Roisin Y (2003) Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). J Morph 255:69-79PubMedCrossRefGoogle Scholar
  103. Pen I, Weissing FJ (2000) Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc R Soc Lond Ser B 267:2411-2418CrossRefGoogle Scholar
  104. Queller DC, Strassmann JE (1998) Kin selection and social insects. Bioscience 48:165-175CrossRefGoogle Scholar
  105. Reeve HK, Ratnieks FLW (1993) Queen-queen conflict in polygynous societies: mutual tolerance and reproductive skew. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 45-85Google Scholar
  106. Reyer H-U, Westerterp K (1985) Parental energy expenditure: a proximate cause of helper recruit-ment in the pied kingfisher (Ceryle rudis). Behav Ecol Sociobiol 17:363-369CrossRefGoogle Scholar
  107. Reyer H-U, Dittami JP, Hall MR (1986) Avian helpers at the nest: are they psychologically castrated? Ethology 71:216-228CrossRefGoogle Scholar
  108. Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143:751-765CrossRefGoogle Scholar
  109. Roisin Y (1999) Philopatric reproduction, a prime mover in the evolution of termite sociality? Insectes Soc 46:297-305CrossRefGoogle Scholar
  110. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95-119Google Scholar
  111. Roisin Y (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Soc 48:224-230CrossRefGoogle Scholar
  112. Roonwal ML (1970) Termites of the oriental region. In: Krishna K, Weesner FM (eds) Biology of termites, vol. II. Academic Press, New York, pp 315-391Google Scholar
  113. Rosengaus RB, Maxmen AB, Coates LA, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125-134CrossRefGoogle Scholar
  114. Rosengaus RB, Traniello JFA (2001) Disease susceptibility and the adaptive nature of colony demog-raphy in the dampwood termite Zootermopsis angusticollis. Behav Ecol Sociobiol 50:546-556CrossRefGoogle Scholar
  115. Roux EA, Korb J (2004) Evolution of eusociality and the soldier caste in termites: a validation of the intrinsic benefit hypothesis. J Evol Biol 17:869-875PubMedCrossRefGoogle Scholar
  116. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 52-93CrossRefGoogle Scholar
  117. Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869-876CrossRefGoogle Scholar
  118. Soki K, Josens G, Loreau M (1996) Growth and demography of Cubitermes speciosus mounds (Isoptera, Termitidae). Insectes Soc 43:189-200CrossRefGoogle Scholar
  119. Stacey PB, Ligon JD (1991) The benefits of philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size. Am Nat 137:831-846CrossRefGoogle Scholar
  120. Stern DL, Foster WA (1997) The evolution of sociality in aphids : a clone’s-eye view. In: Choe JC, Crespi BJ (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 150-165CrossRefGoogle Scholar
  121. Thompson GJ, Herbert PDN (1998) Population genetic structure of the neotropical termite Nasutitermes nigriceps (Isoptera: Termitidae). Heredity 8:48-55CrossRefGoogle Scholar
  122. Thompson GJ, Kitade O, Lo N, Crozier RH (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13:869-881CrossRefGoogle Scholar
  123. Thompson GJ, Kitade O, Lo N, Crozier RH (2004) On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol 17:217-220PubMedCrossRefGoogle Scholar
  124. Thorne BL (1996) Termite terminology. Sociobiology 28:253-263Google Scholar
  125. Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27-54CrossRefGoogle Scholar
  126. Thorne BL, Carpenter JM (1992) Phylogeny of Dictyoptera. Syst Entomol 17:253-268CrossRefGoogle Scholar
  127. Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Ann Rev Entomol 48:283-306CrossRefGoogle Scholar
  128. Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77-93Google Scholar
  129. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci 100:12808-12813Google Scholar
  130. Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141-168Google Scholar
  131. Traniello JFA, Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci 99:6838-6842PubMedCrossRefGoogle Scholar
  132. Veeranna G, Basalingappa S (1990) Population density in different parts of the mound nests of the termite Odontotermes obesus Rambur and their functional behavior. Entomol 15:59-62Google Scholar
  133. Vehrencamp SL (1983) A model for the evolution of despotic versus egalitarian societies. Anim Behav 23:327-335Google Scholar
  134. Veltman CJ (1989) Flock, pair, and group living lifestyles without cooperative breeding by Australian magpies, Gymnorhina tibicen. Ibis 131:601-608CrossRefGoogle Scholar
  135. Vinque PP, Tilquin JP (1978) A sex-linked ring quadrivalent in Termitidae (Isoptera). Chromosoma 67:151-156CrossRefGoogle Scholar
  136. Walker EM (1922) The terminal structures of orthopteroid insects: a phylogenetic study II. The terminal structures of the male. Ann Entomol Soc Am 15:1-87Google Scholar
  137. Zimmerman RB (1983) Sibling manipulation and indirect fitness in termites. Behav Ecol Sociobiol 12:143-145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Judith Korb

    There are no affiliations available

    Personalised recommendations