Advertisement

The Algebras of Łukasiewicz Many-Valued Logic: A Historical Overview

  • Roberto Cignoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4460)

Abstract

An outline of the history of the algebras corresponding to Łukasiewicz many-valued logic from the pioneering work by G. Moisil in 1940 until D. Mundici’s work in 1986.

Keywords

Boolean Algebra Subdirect Product Algebraic Logic Classical Propositional Calculus Axiomatic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri, Columbia, Missouri (1974)Google Scholar
  2. 2.
    Belluce, L.P.: Further results on infinite-valued predicate calculus. J. Symb. Logic 29, 69–78 (1964)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belluce, L.P.: Semisimple algebras of infinite valued logic. Can. J. Math. 38, 1356–1379 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued first-order logic. J. Symb. Log. 28, 43–50 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernays, P.: Axiomatische Untersuchungen des Aussagen-Kalkuls der “Principia Mathematica”. Math. Z. 25, 305–320 (1926)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Birkhoff, G.: Rings of sets. Duke Math. J. 3, 443–454 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blok, W.J., Ferreirim, I.M.A.: On the structure of hoops. Algebra Univers. 43, 233–257 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blok, W.J., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences III. Algebra Univers. 32, 545–608 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  10. 10.
    Borkowski, L. (ed.): Selected Works of J. Łukasiewicz. North-Holland, Amsterdam (1970)Google Scholar
  11. 11.
    Bosbach, B.: Concerning bricks. Acta Math. Hung. 38, 89–104 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Buff, H.W.: Decidable and undecidable MV-algebras. Algebra Univers. 21, 234–249 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93, 74–90 (1959)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chang, C.C.: The writing of the MV-algebras. Stud. Log. 61, 3–6 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cignoli, R.: Proper n-valued Łukasiewicz algebras as S-algebras of Łukasiewicz n-valued propositional calculi. Stud. Log. 41, 4–16 (1982)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cignoli, R.: An algebraic approach to elementary theories based on n-valued Łukasiewicz logics. Z. Math. Logik Grundlagen der Mathematik 30, 87–96 (1984)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cornish, W.H.: Lattice-ordered groups and BCK-algebras. Math. Jap. 25, 471–476 (1980)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cornish, W.H.: On Iséki’s BCK-algebras. In: Algebraic structures and applications, pp. 101–122. M. Dekker, New York (1982)Google Scholar
  20. 20.
    Czyzowicz, J., Mundici, D., Pelc, A.: Ulam’s searching game with lies. Journal of Combinatorial Theory A(52), 62–76 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian ℓ-groups. Stud. Log. 53, 417–432 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dwinger, P.: A survey of the theory of Post algebras. In: Dunn, J.M., Epstein, E. (eds.) Modern Uses of multiple valued Logics, pp. 53–75. D. Reidel, Dordrecht (1977)Google Scholar
  23. 23.
    Epstein, G.: The lattice theory of Post algebras. Trans. Amer. Math. Soc. 95, 300–317 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fisch, M., Turquette, A.: Peirce’s triadic logic. Trans. Charles S. Peirce Soc. 2, 71–85 (1966)MathSciNetGoogle Scholar
  25. 25.
    Font, J.M., Rodríguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8, 5–31 (1984)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Georgescu, G., Iourgulescu, A., Rudeanu, S.: Grigore C. Moisil (1906 - 1973) and his School in Algebraic Logic. International Journal of Computers, Communications & Control 1, 81–99 (2006)CrossRefGoogle Scholar
  27. 27.
    Goodearl, K.: Notes on Real and Complex C *-algebras. Birkhäuser, Boston (1982)zbMATHGoogle Scholar
  28. 28.
    Grigolia, R.S.: Algebraic analysis of Łukasiewicz-Tarski’s n-valued logical systems. In: Wójcicki, R., Malinowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, Ossolineum, Wrocław, pp. 81–92 (1977)Google Scholar
  29. 29.
    Halmos, P.: Algebraic Logic I (Monadic Boolean algebras). Compos. Math. 12, 217–249 (1956)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Imai, Y., Iséki, K.: On axiom system of propositional calculi XIV. Proc. Japan Acad. 42, 19–22 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Iséki, K., Tanaka, S.: An introduction to the theory of BCK-algebras. Math. Jap. 23, 1–26 (1978)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Jaskowski, J.: Recherches sur le systéme de la logique intuitionniste. In: Actes du Congrés International de Philosophie scientifique, VI Philosophie des Mathémtiques, Hermann, Paris, pp. 58–61 (1936)Google Scholar
  33. 33.
    Komori, Y.: Completeness of two theories on ordered abelian groups and embedding relations. Nagoya Math. J. 77, 33–39 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Komori, Y.: Super Łukasiewicz propositional logics. Nagoya Math. J. 84, 119–133 (1981)CrossRefzbMATHGoogle Scholar
  35. 35.
    Lacava, F.: Alcune proprietá delle Ł-algebre e delle Ł-algebre esistenzialmente chiuse. Boll. Unione Mat. Ital. A 16, 360–366 (1979)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lacava, F.: Sulla struttura delle Ł-algebre, Atti. Accad. Naz. Lincei, VIII Ser., Rend. Cl. Sci. Fis. Mat. Nat. 67, 275–281 (1979)MathSciNetGoogle Scholar
  37. 37.
    Lacava, F.: classe delle Ł-algebre esistenzialmente chiuse. Atti. Accad. Naz. Lincei, VIII Ser., Rend. Cl. Sci. Fis. Mat. Nat. 68, 319–322 (1980)MathSciNetGoogle Scholar
  38. 38.
    Lacava, F., Saeli, D.: Proprietà e model-completamento di alcune varietà di algebre di Łukasiewicz, Atti. Accad. Naz. Lincei, VIII Ser., Rend. Cl. Sci. Fis. Mat. Nat. 60, 359–367 (1976)zbMATHGoogle Scholar
  39. 39.
    Lacava, F., Saeli, D.: Sul model-completamento della teoria delle Ł-catene. Boll. Unione Mat. Ital. A(5), 107–110 (1977)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Łukasiewicz, J.: O logice trójwarkościowej. Ruch Filozoficzny 6, 170–171 (1920) (English translation in [10])Google Scholar
  41. 41.
    Łukasiewicz, J.: Elementy logiki matematycznej. Warzawa (1929) (English translation in [43])Google Scholar
  42. 42.
    Łukasiewicz, J.: Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. C. R. Soc. Sci. Lett. Varsovie, Cl. III 23, 153–178 (1930) (English translation in [10])Google Scholar
  43. 43.
    Łukasiewicz, J.: Elements of Mathematical Logic. Pergamon Press, New York (1964)zbMATHGoogle Scholar
  44. 44.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. vol. 23, pp. 30–50 (1930) (English translation in [10] and [85])Google Scholar
  45. 45.
    Mayet, R.: Relations entre les anneaux booléens, les anneaux monadiques et les algébres de Łukasiewicz. C. R. Acad. Sci. Paris Ser. A B, 275, A777–A779 (1972)Google Scholar
  46. 46.
    Mangani, P.: Su certe algebre connesse con logiche a piú valori. Boll. Unione Mat. Ital. A(8), 68–78 (1973)MathSciNetzbMATHGoogle Scholar
  47. 47.
    McCall, S. (ed.): Polish Logic 1920-1939. Clarendon Press, Oxford (1967)zbMATHGoogle Scholar
  48. 48.
    McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symb. Log. 16, 1–13 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Moisil, G.: Recherches sur les logiques nonchrysippiènnes. Ann. Sci. Univ. Jassy 26, 431–436 (1940) (reprinted in [53], pp. 195–232)Google Scholar
  50. 50.
    Moisil, G.: Notes sur les logiques nonchrysippiènnes. Ann. Sci. Univ. Jassy 27, 86–98 (1941) (reprinted in [53], pp. 233–243)Google Scholar
  51. 51.
    Moisil, G.: Sur les anneaux de caracteristique 2 ou 3 et leur applications, Bull. De l’École Polytech. Bucharest 12, 66–90 (1941) (reprinted in [53], pp. 259–282)Google Scholar
  52. 52.
    Moisil, G.: Sur les idéaux des algébres Lukasiewicziennes trivalentes. Ann. Univ. “C. I. Parhon” Bucuresti. Ser. Acta Logica 3, 83–93 (1960) (reprinted in [53], pp. 244–258)Google Scholar
  53. 53.
    Moisil, G.: Essays sur les Logiques Nonchrysippiènnes. Académie de la République Socialiste de Roumanie, Bucharest (1972)Google Scholar
  54. 54.
    Monteiro, A.: Sur la Définition des Algèbres de Łukasiewicz trivalentes, Universidad Nacional del Sur, Bahía Blanca (1964)Google Scholar
  55. 55.
    Monteiro, A.: Construction des Algèbres de Łukasiewicz trivalentes dans les Algèbres de Boole Monadiques-I. Math. Jap. 12, 1–23 (1967)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Monteiro, A.: Sur les algèbres de Heyting symétriques. Port. Math. 39, 1–237 (1980)zbMATHGoogle Scholar
  57. 57.
    Monteiro, A.: Unpublished papers, I, Notas Log. Mat., vol. 40, Bahía Blanca (1996)Google Scholar
  58. 58.
    Mundici, D.: Interpretation of AF C *-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)CrossRefzbMATHGoogle Scholar
  59. 59.
    Mundici, D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Jap. 31, 889–894 (1986)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Mundici, D.: The Turing complexity of AF C *-algebras with lattice-ordered K 0. In: Börger, E. (ed.) Computation Theory and Logic. LNCS, vol. 270, pp. 256–264. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  61. 61.
    Mundici, D.: Farey stellar subdivisions, ultrasimplicial groups and K o of AF C *-algebras. Adv. Math. 68, 23–39 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Mundici, D.: The C *-algebras of three-valued logics. In: Ferro, R., Bonotto, C., Valentini, S., Zanardo, A. (eds.) Logic Colloquium 1988, Padova, pp. 61–77. North-Holland, Amsterdam (1989)Google Scholar
  63. 63.
    Mundici, D.: Complexity of adaptive error-correcting codes. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 300–307. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  64. 64.
    Mundici, D.: The logic of Ulam’s game with lies. In: Bicchieri, C., Dalla Chiara, M.L. (eds.) Knowledge, Belief and Strategic Interaction, pp. 275–284. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  65. 65.
    Mundici, D.: Turing complexity of the Behncke-Leptin C *-algebras with a two-point dual. Ann. Math. Artif. Intell. 26, 287–294 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Mundici, D.: Logic of infinite quantum systems. Int. J. Theoret. Phys. 32, 1941–1955 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Mundici, D.: Ulam’s game, Łukasiewicz logic and AF C *-algebras. Fundamenta Informaticae 18, 151–161 (1993)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Mundici, D.: Łukasiewicz normal forms and toric desingularizations. In: Hodges, W., et al. (eds.) Proceedings of Logic Colloquium 1993, Keele, England, pp. 401–423. Oxford University Press, Oxford (1996)Google Scholar
  69. 69.
    Post, E.L.: Introduction to a general theory of elementary propositions. Amer. J. Math. 43, 163–185 (1921)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Rand, R.: Prolegomena to Three-valued Logic. The Polish Review 13, 3–61 (1968)Google Scholar
  71. 71.
    Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics, Państowe Wydawnictwo Naukowe, Warsaw (1963)Google Scholar
  72. 72.
    Romanowska, A., Traczyk, T.: On commutative BCK-algebras. Math. Jap. 24, 567–583 (1980)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Romanowska, A., Traczyk, T.: Commutative BCK-algebras: subdirectly irreducible algebras and varieties. Math. Jap. 27, 35–48 (1982)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Rose, A., Rosser, J.B.: Fragments of many-valued statement calculi. Trans. Amer. Math. Soc. 87, 1–53 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Rosenbloom, P.C.: Post algebras, I: postulates and general theory. Amer. J. Math. 64, 167–188 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Rousseau, G.: Post algebras and pseudo-Post algebras. Fund. Math. 67, 133–145 (1970)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Saeli, D.: Problemi di decisione per algebre connesse a logiche a piú valori, Atti. Accad. Naz. Lincei, VIII Ser., Rend. Cl. Sci. Fis. Mat. Nat. 59, 219–223 (1975)MathSciNetGoogle Scholar
  78. 78.
    Schwartz, D.: Das Homomorphietheorem für MV-Algebren endlicher Ordnung. Z. Math. Logik Grundlagen Math. 22, 141–148 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Schwartz, D.: Aritmetische Theorie der MV-Algebren endlicher Ordung. Math. Nachr. 77, 65–75 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Schwartz, D.: Polyadic MV-algebras. Z. Math. Logik Grundlagen der Mathematik 26, 561–564 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Scott, D.: Completeness and axiomatizability in many-valued logic. In: Tarski Symposium. Amer Math. Soc., Providence, Rh. I., pp. 411–435 (1974)Google Scholar
  82. 82.
    Stone, M.H.: Subsumption of Boolean algebras under the theory of rings. Proc. Natl. Acad. Sci. USA 21, 103–105 (1935)CrossRefzbMATHGoogle Scholar
  83. 83.
    Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Tarski, A.: Der Aussagenkalkul und die Topologie. Fund. Math. 31, 103–134 (1938) (English transltion in [85])Google Scholar
  85. 85.
    Tarski, A.: Logic, Semantics, Metamathematics. Clarendon Press, Oxford (1956) (reprinted Hackett, Indianapolis, 1983)Google Scholar
  86. 86.
    Torrens, A.: W-algebras which are Boolean products of members of SR[1] and CW-algebras. Stud. Log. 46, 263–272 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Traczyk, T.: Axioms and some properties of Post algebras. Colloq. Math. 10, 193–209 (1963)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Traczyk, T.: A generalization of the Loomis-Sikorski Theorem. Colloq. Math. 12, 155–161 (1964)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Traczyk, T.: On the variety of bounded commutative BCK-algebras. Math. Jap. 24, 238–292 (1979)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Traczyk, T.: Free bounded commutative BCK-algebra, with one free generator. Demonstr. Math. 16, 1049–1105 (1983)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Wajsberg, M.: Beiträge zum Metaaussagenkalkül I. Mh. Math. Phys. 42, 221–242 (1935) (English translation in: Surma 1977)Google Scholar
  92. 92.
    Wolénski, J.: Logic and Philosophy in the Łvov - Warsaw School. Kluwer, Dordrecht (1989)CrossRefzbMATHGoogle Scholar
  93. 93.
    Yutani, H.: On a system of axioms of commutative BCK-algebras. Math. Seminar Notes Kobe Univ. 5, 255–256 (1977)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Zach, R.: Completeness before Post: Bernays, Hilbert, and the development of propositional logic. Bull. Symb. Log. 5, 331–366 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roberto Cignoli
    • 1
  1. 1.Instituto Argentino de Matemática - CONICET, Saavedra 15, piso 3, C1083ACA Buenos AiresArgentina

Personalised recommendations