Advertisement

To Pool or Not to Pool?

  • Badi H. Baltagi
  • Georges Bresson
  • Alain Pirotte
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 46)

Keywords

Panel Data Forecast Performance Markov Chain Monte Carlo Method Monte Carlo Experiment Predictive Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.W. and C. Hsiao, 1982, Formulation and estimation of dynamic models using panel data, Journal of Econometrics 18, 47–82.CrossRefGoogle Scholar
  2. Arellano, M. and S. Bond, 1991, Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, Review of Economic Studies 58, 277–297.CrossRefGoogle Scholar
  3. Baltagi, B., 1981, Pooling: An experimental study of alternative testing and estimation procedures in a two-way error components model, Journal of Econometrics 17, 21–49.CrossRefGoogle Scholar
  4. Baltagi, B., 2005, Econometric Analysis of Panel Data, Wiley, Chichester.Google Scholar
  5. Baltagi, B.H. and J.M. Griffin, 1997, Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline, Journal of Econometrics 77, 303–327.CrossRefGoogle Scholar
  6. Baltagi, B.H., J. Hidalgo, and Q. Li, 1996, A non-parametric test for poolability using panel data, Journal of Econometrics 75, 345–367.CrossRefGoogle Scholar
  7. Baltagi, B.H., J.M. Griffin, and W. Xiong, 2000, To pool or not to pool: Homogeneous versus heterogeneous estimators applied to cigarette demand,\textit{} Review of Economics and Statistics 82, 117–126.CrossRefGoogle Scholar
  8. Baltagi, B.H., G. Bresson, and A. Pirotte, 2002, Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption, Economics Letters 76, 375–382.CrossRefGoogle Scholar
  9. Baltagi, B.H., G. Bresson, J.H. Griffin, and A. Pirotte, 2003, Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from french regional gasoline consumption, Empirical Economics 28, 795–811.CrossRefGoogle Scholar
  10. Baltagi, B.H., G. Bresson, and A. Pirotte, 2004, Tobin $q$: Forecast performance for hierarchical Bayes, heterogeneous and homogeneous panel data estimators, Empirical Economics 29, 107–113.CrossRefGoogle Scholar
  11. Bun, M., 2004, Testing poolability in a system of dynamic regressions with nonspherical disturbances, Empirical Economics 29, 89–106.CrossRefGoogle Scholar
  12. Chib, S., 2001, Markov chain Monte Carlo methods: Computation and inference, in Handbook of Econometrics, J. Heckman and E. Leamer, eds., vol. 5, Chap. 57, North-Holland, Amsterdam, 3570–3649.Google Scholar
  13. Chib, S., 2007, Panel data modeling and inference: A bayesian primer, in The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, L. Màtyàs and P. Sevestre, eds., Chap. 14, Kluwer Academic Publishers, Dordrecht (forthcoming).Google Scholar
  14. Driver, C., K. Imai, P. Temple, and A. Urga, 2004, The effect of uncertainty on UK investment authorisation: Homogeneous vs. heterogeneous estimators, Empirical Economics 29, 115–128.CrossRefGoogle Scholar
  15. Gelfand, A.E. and A.F.M. Smith, 1990, Sampling-based approaches to marginal densities, Journal of the American Statistical Association 46, 84–88.Google Scholar
  16. Gelfand, A.E. and A.F.M. Smith, 1992, Bayesian statistics without tears: A sampling–resampling perspective, American Statistician 46, 84–88.CrossRefGoogle Scholar
  17. Hsiao, C., 2003, Analysis of Panel Data, Second Edition, Cambridge University Press, Cambridge.Google Scholar
  18. Hsiao, C. and H.M. Pesaran, 2007, Random coefficient panel data models, in The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, L. Màtyàs and P. Sevestre, eds., Chap. 5, Kluwer Academic Publishers, Dordrecht (forthcoming).Google Scholar
  19. Hsiao, C. and A.K. Tahmiscioglu, 1997, A panel analysis of liquidity constraints and firm investment, Journal of the American Statistical Association 92, 455–465.CrossRefGoogle Scholar
  20. Hsiao, C., M.H. Pesaran, and A.K. Tahmiscioglu, 1999, Bayes estimation of short-run coefficients in dynamic panel data models, in Analysis of Panels and Limited Dependent Variable Models, C. Hsiao, K. Lahiri, L.-F. Lee, and M.H. Pesaran, eds., Cambridge University Press, Cambridge, 268–296.Google Scholar
  21. Judge, G.G. and M.E. Bock, 1978, The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics, North-Holland, Amsterdam.Google Scholar
  22. Keane, M.P. and D.E. Runkle, 1992, On the estimation of panel-data models with serial correlation when instruments are not strictly exogenous, Journal of Business and Economic Statistics 10, 1–9.CrossRefGoogle Scholar
  23. Koop, G., 2003, Bayesian Econometrics, Wiley, Chichester.Google Scholar
  24. Lindley, D.V. and A.F.M. Smith, 1972, Bayes estimates for the linear model, Journal of the Royal Statistical Society B, 34, 1–41.Google Scholar
  25. Maddala, G.S., R.P. Trost, H. Li, and F. Joutz, 1997, Estimation of short-run and long-run elasticities of energy demand from panel data using shrinkage estimators, Journal of Business and Economic Statistics 15, 90–100.CrossRefGoogle Scholar
  26. Maddala, G.S. and W. Hu, 1996, The pooling problem, in The Econometrics of Panel Data: A Handbook of Theory with Applications, L. Màtyàs and P. Sevestre, eds., Kluwer Academic Publishers, Dordrecht, 307–322.Google Scholar
  27. McElroy, M.B., 1977, Weaker MSE criteria and tests for linear restrictions in regression models with non-spherical disturbances, Journal of Econometrics 6, 389–394.CrossRefGoogle Scholar
  28. Pesaran, M.H. and R. Smith, 1995, Estimating long-run relationships from dynamic heterogenous panels, Journal of Econometrics 68, 79–113.CrossRefGoogle Scholar
  29. Pesaran, M.H. and Z. Zhao, 1999, Bias reduction in estimating long-run relationships from dynamic heterogeneous panels, in Analysis of Panels and Limited Dependent Variable Models, C. Hsiao, K. Lahiri, L.-F. Lee and M.H. Pesaran, eds., Cambridge University Press, Cambridge, 297–322.Google Scholar
  30. Pesaran, M.H., R. Smith, and K.S. Im, 1996, Dynamic linear models for heterogenous panels, in The Econometrics of Panel Data: A Handbook of Theory with Applications, L. Màtyàs and P. Sevestre, eds., Kluwer Academic Publishers, Dordrecht, 145–195.Google Scholar
  31. Pesaran, M.H., Y. Shin, and R. Smith, 1999, Pooled mean group estimation of dynamic heterogeneous panels, Journal of the American Statistical Association 94, 621–634.CrossRefGoogle Scholar
  32. Rao, C.R., 1975, Simultaneous estimation of parameters in different linear models and applications to biometric problems, Biometrics 31, 545–554.CrossRefGoogle Scholar
  33. Robertson, D. and J. Symons, 1992, Some strange properties of panel data estimators, Journal of Applied Econometrics 7, 175–189.Google Scholar
  34. Roy, S.N., 1957, Some Aspects of Multivariate Analysis, Wiley, New York.Google Scholar
  35. Smith, A.F.M., 1973, A general bayesian linear model, Journal of the Royal Statistical Society B, 35, 67–75.Google Scholar
  36. Swamy, P.A.V.B., 1970, Efficient inference in a random coefficient regression model, Econometrica 38, 311–323.CrossRefGoogle Scholar
  37. Wallace, T.D., 1972, Weaker criteria and tests for linear restrictions in regression, Econometrica 40, 689–698.CrossRefGoogle Scholar
  38. Zellner, A., 1962, An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association 57, 348–368.CrossRefGoogle Scholar
  39. Zellner, A., 1971, An Introduction to Bayesian Inference in Econometrics, Wiley, New York.Google Scholar
  40. Ziemer, R.F. and M.E. Wetzstein, 1983, A Stein-rule method for pooling data, Economics Letters 11, 137–143.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Badi H. Baltagi
    • 1
  • Georges Bresson
    • 2
  • Alain Pirotte
    • 2
  1. 1.Center for Policy ResearchSyracuse UniversitySyracuseUSA
  2. 2.ERMES (UMR 7181, CNRS), Université Paris II and TEPP (FR 3126, CNRS), Institute for Labor Studies and Public PoliciesFrance

Personalised recommendations