Advertisement

Panel Data Modeling and Inference: A Bayesian Primer

  • Siddhartha Chib
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 46)

Keywords

Posterior Distribution Markov Chain Monte Carlo American Statistical Association Posterior Density Marginal Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, J. and S. Chib (1993), Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88, 669–679.CrossRefGoogle Scholar
  2. Albert, J. and S. Chib (1995), Bayesian residual analysis for binary response models, Biometrika, 82, 747–759.CrossRefGoogle Scholar
  3. Basu, S. and S. Chib (2003), Marginal likelihood and Bayes factors for Dirichlet process mixture models, Journal of the American Statistical Association, 98, 224–235.CrossRefGoogle Scholar
  4. Besag, J. (1974), Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the Royal Statistical Society, B, 36, 192–236.Google Scholar
  5. Butler, J. S. and R. Moffitt (1982), A computationally efficient quadrature procedure for the one factor multinomial probit model, Econometrica, 50, 761–764.CrossRefGoogle Scholar
  6. Carlin, B. P. and T. Louis (2000), Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed., Chapman and Hall, New York.Google Scholar
  7. Chaloner, K. and R. Brant (1988), A Bayesian approach to outlier detection and residual analysis, Biometrika, 75, 651–659.CrossRefGoogle Scholar
  8. Chamberlain, G. (1980), Analysis of covariance with qualitative data, Review of Economic Studies, 47, 225–238.CrossRefGoogle Scholar
  9. Chen, Z. and D. B. Dunson (2003), Random effects selection in linear mixed models, Biometrics, 59, 762–769.Google Scholar
  10. Chen, M-H and Q-M. Shao (1998), On Monte Carlo methods for estimating ratios of normalizing constants,Annals of Statistics, 25, 1563–1594.Google Scholar
  11. Chiang, J., S. Chib and C. Narasimhan (1999), Markov Chain Monte Carlo and models of consideration set and parameter heterogeneity, Journal of Econometrics, 89, 223–248.CrossRefGoogle Scholar
  12. Chib, S. (1992), Bayes regression for the Tobit censored regression model, Journal of Econometrics, 51, 79–99.CrossRefGoogle Scholar
  13. Chib, S. (1995), Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90, 1313–1321.CrossRefGoogle Scholar
  14. Chib, S. (2001), Markov Chain Monte Carlo methods: Computation and inference, in Handbook of Econometrics volume 5 (eds., J. J. Heckman and E. Leamer), Amsterdam: North Holland 3569-3649.Google Scholar
  15. Chib, S. and E. Greenberg (1994), Bayes inference for regression models with ARMA(p,q) errors, Journal of Econometrics, 64, 183–206.CrossRefGoogle Scholar
  16. Chib, S. and E. Greenberg (1995), Understanding the Metropolis–Hastings algorithm, American Statistician, 49, 327–335.CrossRefGoogle Scholar
  17. Chib, S. and E. Greenberg (1996), Markov chain Monte Carlo simulation methods in econometrics, Econometric Theory, 12, 409–431.CrossRefGoogle Scholar
  18. Chib, S. E. Greenberg, and R. Winklemnann (1998), Posterior simulation and Bayes factors in panel count data models, Journal of Econometrics, 86, 33–54.CrossRefGoogle Scholar
  19. Chib, S. and B. P. Carlin (1999), On MCMC sampling in hierarchical longitudinal models, Statistics and Computing, 9, 17–26.CrossRefGoogle Scholar
  20. Chib, S. and I. Jeliazkov (2001), Marginal likelihood from the Metropolis–Hastings output, Journal of the American Statistical Association, 96, 270–281.CrossRefGoogle Scholar
  21. Chib, S., P. B. Seetharaman, and A. Strijnev (2004) Model of brand choice with a no-purchase option calibrated to scanner panel data, Journal of Marketing Research, 184–196.Google Scholar
  22. Congdon, P. (2001) Bayesian Statistical Modelling, John Wiley & Sons, Chichester.Google Scholar
  23. Diciccio, T, J., R, E., Kass, A, E., Raftery and L. Wasserman (1997), Computing Bayes factors by combining simulation and asymptotic approximations, Journal of the American Statistical Association, 92, 903–915.CrossRefGoogle Scholar
  24. Gelfand, A. E. and A. F. M. Smith (1990), Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398–409.CrossRefGoogle Scholar
  25. Gelfand, A. E., S. K. Sahu, and B. P. Carlin (1995), Efficient parameterizations for normal linear mixed models,Biometrika, 82, 479–488.Google Scholar
  26. Geman, S. and D. Geman (1984), Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 609–628.CrossRefGoogle Scholar
  27. Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and their applications,Biometrika, 57, 97–109.CrossRefGoogle Scholar
  28. Heckman, J.J. (1981), Statistical models for discrete panel data, in Structural Analysis of Discrete Data with Econometric Applications, (eds., C. F. Manski and D. McFadden), Cambridge: MIT Press, 114–178.Google Scholar
  29. Lindley, D.V. and A.F.M. Smith (1972), Bayes estimates for the linear model, Journal of the Royal Statistical Society B, 34, 1–41.Google Scholar
  30. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  31. Page, E (1977), Approximations to the cumulative normal function and its inverse for use on a pocket calculator, Applied Statistics, 26, 75–76.CrossRefGoogle Scholar
  32. Roberts, C.P. (2001), The Bayesian Choice, New York: Springer Verlag.Google Scholar
  33. Ripley, B. (1987), Stochastic Simulation, New York: John Wiley & Sons.Google Scholar
  34. Stout, W. F. (1974), Almost Sure Convergence, New York: Academic Press.Google Scholar
  35. Tanner, M. A. and W. H. Wong (1987), The calculation of posterior distributions by data augmentation, Journal of the American Statistical Association, 82, 528–549.CrossRefGoogle Scholar
  36. Tierney, L. (1994), Markov chains for exploring posterior distributions (with discussion), Annals of Statistics, 22, 1701–1762.CrossRefGoogle Scholar
  37. Wakefield, J. C., A. F. M. Smith, A. Racine Poon, and A. E. Gelfand (1994), Bayesian analysis of linear and non-linear population models by using the Gibbs sampler, Applied Statistics, 43, 201–221.CrossRefGoogle Scholar
  38. Zellner, A (1975), Bayesian analysis of regression error terms, Journal of the American Statistical Association, 70, 138–144.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Siddhartha Chib
    • 1
  1. 1.Olin Business School, Campus Box 1133Washington University in St. Louis

Personalised recommendations