Synoptic Maps Forecast Using Spatio-temporal Models

  • J. L. Crespo
  • P. Bernardos
  • M. E. Zorrilla
  • E. Mora
Conference paper

DOI: 10.1007/978-3-540-75867-9_7

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)
Cite this paper as:
Crespo J.L., Bernardos P., Zorrilla M.E., Mora E. (2007) Synoptic Maps Forecast Using Spatio-temporal Models. In: Moreno Díaz R., Pichler F., Quesada Arencibia A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg

Abstract

The objective of this paper is to study several approaches to forecasting the temporal evolution of meteorological synoptic maps that carry information in visual form but without objects. Window-based descriptors are used in order to accomplish continuity so the prediction task is possible. Linear and non-linear models are applied for the prediction task, the first one being based on a spatio-temporal autoregressive (STAR) model whereas the second one is based on artificial neural networks. The method and obtained results are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. L. Crespo
    • 1
  • P. Bernardos
    • 1
  • M. E. Zorrilla
    • 2
  • E. Mora
    • 1
  1. 1.Department of Applied Mathematics and Computer Sciences, University of Cantabria. Avda. de los Castros s/n 39005 SantanderSpain
  2. 2.Department of Mathematics, Statistics and Computation, University of Cantabria. Avda. de los Castros s/n 39005 SantanderSpain

Personalised recommendations