Advertisement

On Combining 01X-Logic and QBF

  • Marc Herbstritt
  • Bernd Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

We discuss how to combine 01X-logic and quantified boolean formulas (QBF) within a homogeneous SAT/QBF-framework in the context of bounded model checking of blackbox designs. The proposed combination allows a flexible handling of blackboxes w.r.t. computational resources. Preliminary results show the scalability of the approach.

Keywords

01X QBF Bounded Model Checking Blackbox Designs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded Model Checking. Advances in Computers 58 (2003)Google Scholar
  2. 2.
    Herbstritt, M., Becker, B., Scholl, C.: Advanced SAT-Techniques for Bounded Model Checking of Blackbox Designs. In: Proc. of MTV, pp. 37–44. IEEE CS, Los Alamitos (2006)Google Scholar
  3. 3.
    Herbstritt, M., Becker, B.: On SAT-based Bounded Invariant Checking of Blackbox Designs. In: Proc. of MTV, pp. 23–28. IEEE CS, Los Alamitos (2005)Google Scholar
  4. 4.
    Jain, A., et al.: Testing, Verification, and Diagnosis in the Presence of Unknowns. In: VLSI Test Symp., pp. 263–269 (2000)Google Scholar
  5. 5.
    Nopper, T., Scholl, C.: Flexible modeling of unknowns in model checking for incomplete designs. In: GI/ITG/GMM Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (2005)Google Scholar
  6. 6.
    Brand, D.: Verification of large synthesized designs. In: Proc. of ICCAD (1993)Google Scholar
  7. 7.
    Tseitin, G.: On the complexity of derivations in propositional calculus. Studies in Constructive Mathematics and Mathematical Logics (1968)Google Scholar
  8. 8.
    Marques-Silva, J., Sakallah, K.: Boolean Satisfiability in Electronic Design Automation. In: Proc. of DAC, pp. 675–680 (2000)Google Scholar
  9. 9.
    Marques-Silva, J., Sakallah, K.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. on Comp. 48(5), 506–521 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engeneering an Efficient SAT Solver. In: Proc. of DAC (2001)Google Scholar
  11. 11.
    Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: Proc. of ASP-DAC (2007)Google Scholar
  12. 12.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An Efficient QBF Solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Narizzano, M., Pulina, L., Tacchella, A.: QBF Evaluation 2006 (2006) [2006-08-02], Available on-line at www.qbflib.org/qbfeval
  16. 16.
    The VIS Group: VIS: A system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marc Herbstritt
    • 1
  • Bernd Becker
    • 1
  1. 1.Albert-Ludwigs-University, Freiburg im BreisgauGermany

Personalised recommendations