Towards Virtual Course Evaluation Using Web Intelligence

  • M. E. Zorrilla
  • D. Marín
  • E. Álvarez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

Web-based learning environments are now extensively used. To guarantee the success in the learning processes, instructors require tools which help them to understand how these systems are used by their students, so that they can undertake more informed actions. Therefore, the aim of this paper is to show a Monitoring and Analysis Tool for E-learning Platforms (MATEP) which is being developed in the University of Cantabria (UC) to help instructors in these tasks. For this, web intelligence techniques are used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avouris, N., Komis, V., Fiotakis, G., Margaritis, M., Voyiatzaki, G.: Logging of fingertip actions is not enough for analysis of learning activities. In: Proc. Workshop Usage Analysis in learning systems (AIED 2005), Amsterdam (2005)Google Scholar
  2. 2.
    Gradío, A., Peris, R., Pinazo, D., Jiménez, A.: Features of student-lecturer interaction in e-learning. In: IV International Conference on Multimedia and Information and Communication Technologies in Education. Seville, Spain (2006)Google Scholar
  3. 3.
    Mazza, R., Dimitrova, V.: CourseVis: A graphical student monitoring tool for supporting instructors in web-based distance courses. International Journal of Human-Computer Studies 65(2), 125–139 (2007)CrossRefGoogle Scholar
  4. 4.
    Merceron, A., Yacef, K.: Tada-ed for educational data mining. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning (2005)Google Scholar
  5. 5.
    Millán, S., Zorrilla, M., Menasalvas, E.: Intelligent e-learning platforms infrastructure. In: Proceedings of XXXI Latin American Informatics conference (CLEI), Cali, Colombia (2005)Google Scholar
  6. 6.
    Mostow, J., Beck, J., Cen, H., Cuneo, A., Gouvea, E., Heiner, C.: An Educational Data Mining Tool to Browe Tutor-Student Interactions: Time Will Tell!Google Scholar
  7. 7.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: discovery and applications of usage patterns from Web data. SIGKDD Explor., vol. 1(2). ACM Press, NewYork (2000)Google Scholar
  8. 8.
    Tang, C., McCalla, G.: Smart recommendation for an evolving e-learning system. International Journal on E-Learning 4(1), 105–129 (2005)Google Scholar
  9. 9.
    Zaïane, O.: Building a Recommender Agent for e-Learning Systems. In: Proceedings of the International Conference on Computers in Education (ICCE) (2002)Google Scholar
  10. 10.
    Zorrilla, M.E., Menasalvas, E., Marín, D., Mora, E., Segovia, J.: Web usage mining project for improving web-based learning sites. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Zorrilla, M., Millán, S., Menasalvas, E.: Data webhouse to support web intelligence in elearning environments. In: Proc. of the IEEE International Conference on Granular Computing, Beijing, China (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. E. Zorrilla
    • 1
  • D. Marín
    • 1
  • E. Álvarez
    • 2
  1. 1.Department of Mathematics, Statistics and Computation, University of Cantabria., Avda. de los Castros s/n 39005 SantanderSpain
  2. 2.Department of Applied Mathematics and Computer Science, University of Cantabria., Avda. de los Castros s/n 39005 SantanderSpain

Personalised recommendations