Generation of Indexes for Compiling Efficient Parsers from Formal Specifications

  • Carlos Gómez-Rodríguez
  • Miguel A. Alonso
  • Manuel Vilares
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

Parsing schemata provide a formal, simple and uniform way to describe, analyze and compare different parsing algorithms. The notion of a parsing schema comes from considering parsing as a deduction process which generates intermediate results called items. An initial set of items is directly obtained from the input sentence, and the parsing process consists of the application of inference rules (called deductive steps) which produce new items from existing ones. Each item contains a piece of information about the sentence’s structure, and a successful parsing process will produce at least one final item containing a full parse tree for the sentence or guaranteeing its existence. Their abstraction of low-level details makes parsing schemata useful to define parsers in a simple and straightforward way. Comparing parsers, or considering aspects such as their correction and completeness or their computational complexity, also becomes easier if we think in terms of schemata. However, when we want to actually use a parser by running it on a computer, we need to implement it in a programming language, so we have to abandon the high level of abstraction and worry about implementation details that were irrelevant at the schema level. In particular, we study in this article how the source parsing schema should be analysed to decide what kind of indexes need to be generated in order to obtain an efficient parser.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, M.A., Cabrero, D., Vilares, M.: Construction of Efficient Generalized LR Parsers. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 7–24. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Carroll, J.A.: Practical unification-based parsing of natural language. TR no. 314, University of Cambridge, Computer Laboratory, England. PhD Thesis (1993)Google Scholar
  3. 3.
    Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 13(2), 94–102 (1970)MATHCrossRefGoogle Scholar
  4. 4.
    Eisner, J., Goldlust, E., Smith, N.A.: Dyna: A declarative language for implementing dynamic programs. In: Proceedings of ACL 2004 (Companion Volume), July 2004, pp. 218–221. Barcelona (2004)Google Scholar
  5. 5.
    Gómez-Rodríguez, C., Alonso, M.A., Vilares, M.: On theoretical and practical complexity of TAG parsers. In: Monachesi, P., Penn, G., Satta, G., Wintner, S. (eds.) FG 2006: The 11th conference on Formal Grammar. Center for the Study of Language and Information, Malaga, Spain, July 29-30, vol. 5, pp. 61–75. Stanford (2006)Google Scholar
  6. 6.
    Gómez-Rodríguez, C., Alonso, M.A., Vilares, M.: Generating XTAG parsers from algebraic specifications. In: Proceedings of the 8th International Workshop on Tree Adjoining Grammar and Related Formalisms. Sydney, July 2006, pp. 103-108, Association for Computational Linguistics, East Stroudsburg, PA (2006)Google Scholar
  7. 7.
    Gómez-Rodríguez, C., Vilares, J., Alonso, M.A.: Automatic Generation of Natural Language Parsers from Declarative Specifications. In: Penserini, L., Peppas, P., Perini, A. (eds.) STAIRS 2006 - Proceedings of the Third Starting AI Researchers’ Symposium, Riva del Garda, Italy, August 2006. Frontiers in Artificial Intelligence and Applications, vol. 142, pp. 259–260. IOS Press, Amsterdam (2006)Google Scholar
  8. 8.
    Kasami, T.: An efficient recognition and syntax algorithm for context-free languages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, Massachussetts (1965)Google Scholar
  9. 9.
    Rosenkrantz, D.J., Lewis II, P.M.: Deterministic Left Corner parsing. In: Conference Record of 1970 Eleventh Annual Meeting on Switching and Automata Theory, pp. 139–152. IEEE Computer Society Press, Los Alamitos (1970)Google Scholar
  10. 10.
    Sampson, G.: The Susanne corpus, Release 3 (1994)Google Scholar
  11. 11.
    Schneider, K.-M.: Algebraic Construction of Parsing Schemata. Mensch & Buch Verlag, Berlin, Germany (2000)Google Scholar
  12. 12.
    Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of deductive parsing. Journal of Logic Programming 24(1-2), 3–36 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schoorl, J.J., Belder, S.: Computational linguistics at Delft: A status report, Report WTM/TT 90–09 (1990)Google Scholar
  14. 14.
    Sikkel, K.: Parsing Schemata — A Framework for Specification and Analysis of Parsing Algorithms. Springer, Berlin (1997)Google Scholar
  15. 15.
    Younger, D.H.: Recognition and parsing of context-free languages in time n 3. Information and Control 10(2), 189–208 (1967)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos Gómez-Rodríguez
    • 1
  • Miguel A. Alonso
    • 1
  • Manuel Vilares
    • 2
  1. 1.Departamento de Computación, Universidade da Coruña, Facultad de Informática, Campus de Elviña 5, 15071 La CoruñaSpain
  2. 2.Departamento de Informática, Universidade de Vigo, E.T.S. de Ingeniería Informática, Campus As Lagoas, 32004 OrenseSpain

Personalised recommendations