Advertisement

An Artificial Imagination for Interactive Search

  • Bart Thomee
  • Mark J. Huiskes
  • Erwin M. Bakker
  • Michael Lew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4796)

Abstract

In this paper we take a look at the predominant form of human computer interaction as used in image retrieval, called interactive search, and discuss a new approach called artificial imagination. This approach addresses two of the grand challenges in this field as identified by the research community: reducing the amount of iterations before the user is satisfied and the small sample problem. Artificial imagination will deepen the level of interaction with the user by giving the computer the ability to think along by synthesizing (‘imagining’) example images that ideally match all or parts of the picture the user has in mind. We discuss two methods of how to synthesize new images, of which the evolutionary synthesis approach receives our main focus.

Keywords

Human computer interaction Content-based image retrieval Interactive search Relevance feedback Artificial imagination Synthetic imagery Evolutionary algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rocchio, J.J.: Relevance Feedback in Information Retrieval. In: Salton, G. (ed.) The Smart Retrieval System: Experiments in Automatic Document Processing, Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  2. 2.
    Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, T.S.: Facial expression recognition from video sequences. In: ICME. Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, vol. 1, pp. 641–644. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  3. 3.
    Bach, J.R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain, R., Shu, C.-F: Virage Image Search Engine: An Open Framework for Image Management. In: Proceedings of the SPIE Storage and Retrieval for Still Image and Video Databases, pp. 76–87 (1996)Google Scholar
  4. 4.
    Chang, S.-F., Chen, W., Sundaram, H.: Semantic Visual Templates: Linking Visual Features to Semantics. In: Proceedings of the IEEE International Conference on Image Processing, pp. 531–535. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  5. 5.
    Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for Learning in Image Retrieval. In: Proceedings of IEEE International Conference on Image Processing, pp. 815–818. IEEE, Los Alamitos (2001)Google Scholar
  6. 6.
    Haas, M., Rijsdam, J., Thomee, B., Lew, M.S.: Relevance Feedback: Perceptual Learning and Retrieval in Bio-computing, Photos, and Video. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 151–156 (October 2004)Google Scholar
  7. 7.
    He, X., Ma, W.-Y., King, O., Li, M., Zhang, H.: Learning and Inferring a Semantic Space from User’s Relevance Feedback for Image Retrieval. In: Proceedings of the ACM Multimedia, pp. 343–346. ACM Press, New York (2002)Google Scholar
  8. 8.
    Huiskes, M.J.: Aspect-based Relevance Learning for Image Retrieval. In: Leow, W.-K., Lew, M.S., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 639–649. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based Multimedia Information Retrieval: State of the Art and Challenges. ACM Transactions on Multimedia Computing, Communications, and Applications 2(1), 1–19 (2006)CrossRefGoogle Scholar
  10. 10.
    Sebe, N., Lew, M.S.: Wavelet Based Texture Classification. In: Proceedings of the International Conference on Pattern Recognition, vol. III, pp. 959–962 (2000)Google Scholar
  11. 11.
    Zhou, X.S., Huang, T.S.: Relevance Feedback in Image Retrieval: A Comprehensive Review. Multimedia Systems Journal 8(6), 536–544 (2003)CrossRefGoogle Scholar
  12. 12.
    Böhm, C., Berchtold, S.: Searching in High-Dimensional Spaces: Index Structures for Improving the Performance of Multimedia Databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  13. 13.
    Yin, P.-Y., Bhanu, B., Chang, K.-C., Dong, A.: Integrating Relevance Feedback Techniques for Image Retrieval Using Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1536–1551 (2005)CrossRefGoogle Scholar
  14. 14.
    Tieu, K., Viola, P.: Boosting Image Retrieval. International Journal of Computer Vision 56(1), 17–36 (2004)CrossRefGoogle Scholar
  15. 15.
    Guo, G., Zhang, H.-J., Li, S.Z.: Boosting for Content-Based Audio Classification and Retrieval: An Evaluation. In: Proceedings of the IEEE Conference on Multimedia and Expo, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  16. 16.
    Muller, H., Muller, W., Marchand-Maillet, S., Pun, T., Squire, D.: Strategies for Positive and Negative Relevance Feedback in Image Retrieval. In: Proceedings of 15th International Conference on Pattern Recognition, pp. 1043–1046 (2000)Google Scholar
  17. 17.
    Lin, Y.-Y., Liu, T.-L., Liu, C.H.-T.: Semantic manifold learning for image retrieval. In: Proceedings of the 13th annual ACM international conference on Multimedia, pp. 249–258. ACM Press, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Tong, S., Chang, E.: Support Vector Machine Active Learning for Image Retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, pp. 107–118. ACM Press, New York (2001)Google Scholar
  19. 19.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley & Sons, Chichester (2002)Google Scholar
  20. 20.
    Therrien, C.: Decision, Estimation, and Classification. John Wiley & Sons, Chichester (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bart Thomee
    • 1
  • Mark J. Huiskes
    • 1
  • Erwin M. Bakker
    • 1
  • Michael Lew
    • 1
  1. 1.LIACS Media Lab, Leiden University 

Personalised recommendations