Review of Computational Intelligence for Gene-Gene and Gene-Environment Interactions in Disease Mapping

  • Arpad Kelemen
  • Yulan Liang
  • Athanasios Vasilakos
Part of the Studies in Computational Intelligence book series (SCI, volume 85)

Comprehensive evaluation of common genetic variations through association of SNP structure with common complex disease in the genome-wide scale is currently a hot area in human genome research. Computational science, which includes computational intelligence, has recently become the third method of scientific enquiry besides theory and experimentation. Interest grew fast in developing and applying computational intelligence techniques to disease mapping using SNP and haplotype data. This review provides a coverage of recently developed theories and applications in computational intelligence for gene-gene and gene-environment interactions in complex diseases in genetic association study.

Keywords

Computational intelligence SNP Haplotype Complex common diseases Gene-gene interactions Gene-environment interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brookes AJ (1999) Review: The essence of SNPs. Gene (234) 177–186.Google Scholar
  2. 2.
    The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796.CrossRefGoogle Scholar
  3. 3.
    The International HapMap Consortium (2004) Integrating ethics and science in the International HapMap Project. Nat Rev Genet 5:467–475.CrossRefGoogle Scholar
  4. 4.
    The International HapMap Consortium (2005) A haplotype map of the human genome. Nature, 437:1299–1320.CrossRefGoogle Scholar
  5. 5.
    Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, and Lander ES (2001) High-resolution haplotype structure in the human genome. Nat. Genet., 29, 229–232.CrossRefGoogle Scholar
  6. 6.
    Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99.CrossRefGoogle Scholar
  7. 7.
    Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856.CrossRefGoogle Scholar
  8. 8.
    Risch N, Merikangas K (1996) The future of genetics studies of complex human diseases. Science 273:1516–1517.CrossRefGoogle Scholar
  9. 9.
    Stephens M and Donnelly P (2000) Inference in molecular population genetics. J R Stat Soc B 62:605–655.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ioannidis JP, Gwinn M, Little J, Higgins JP, Bernstein JL, Boffetta P, Bondy M, Bray MS, Brenchley PE, Buffler PA, Casas JP, Chokkalingam A, Danesh J, Smith GD, Dolan S, Duncan R, Gruis NA, Hartge P, Hashibe M, Hunter DJ, Jarvelin MR, Malmer B, Maraganore DM, Newton-Bishop JA, O’Brien TR, Petersen G, Riboli E, Salanti G, Seminara D, Smeeth L, Taioli E, Timpson N, Uitterlinden AG, Vineis P, Wareham N, Winn DM, Zimmern R, and Khoury MJ (2006) Human Genome Epidemiology Network and the Network of Investigator Networks, A road map for efficient and reliable human genome epidemiology, Nature Genetics, 38(1):3–5.CrossRefGoogle Scholar
  11. 11.
    Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, and Wacholder S (2006) Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions. American Journal of Human Genetics, 79(6):1002–1016.CrossRefGoogle Scholar
  12. 12.
    Cordell HJ, Barratt BJ, and Clayton DG (2004) Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genetic Epidemiology, 26(3):167–185.CrossRefGoogle Scholar
  13. 13.
    Hunter DJ (2005) Gene-environment interactions in human diseases. Nature Reviews Genetics, 6:287–298.CrossRefGoogle Scholar
  14. 14.
    Zondervan KT and Cardon LR (2004) The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5(2):89–100.CrossRefGoogle Scholar
  15. 15.
    Azevedo L, Suriano G, van Asch B, Harding RM, and Amorim A (2006) Epistatic interactions: how strong in disease and evolution? Trends Genet.Google Scholar
  16. 16.
    Chapman, JM, Cooper JD, Todd JA, and Clayton DG (2003) Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered. 56, 18–31.CrossRefGoogle Scholar
  17. 17.
    Liu Z and Lin S (2005) Multilocus LD measure and tagging SNP selection with generalized mutual information. Genet Epidemiol. 29, 353–364.CrossRefGoogle Scholar
  18. 18.
    Halldrsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark AG, and Istraili S (2004) Optimal Haplotype Block-Free Selection of Tagging SNPs for Genome-Wide Association Studies Genome Res. 14, 1633–1640.Google Scholar
  19. 19.
    Howie BN, Carlson CS, Rieder MJ, and Nickerson DA (2006) Efficient selection of tagging single-nucleotide polymorphisms in multiple populations. Human Genetics, 120(1):58–68.CrossRefGoogle Scholar
  20. 20.
    Gopalakrishnan S and Qin ZS (2006) TagSNP Selection Based on Pairwise LD Criterion and Power Analysis in Association Studies. Pacific Sym. Biocomputing, 11:511–522.CrossRefGoogle Scholar
  21. 21.
    Ke X. and Cardon LR (2003) Efficient selective screening of haplotypes tag SNPs. Bioinformatics, 19, 287–288.CrossRefGoogle Scholar
  22. 22.
    Halperin E, Kimmel G, and Shamir R (2005) Tag SNP Selection in Genotype Data for Maximizing SNP Prediction Accuracy. Bioinformatics, 21(suppl 1): i195–i203, 2005.CrossRefGoogle Scholar
  23. 23.
    Akey J, Jin L, and Xiong M (2001) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet 9 (4), 291–300.CrossRefGoogle Scholar
  24. 24.
    Zhu X, Zhang S, Kan D, and Cooper R (2004) Haplotype block definition and its application. Pacic Symposium on Biocomputing 9:152–163.Google Scholar
  25. 25.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, and Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296 (5576), 2225–2229.CrossRefGoogle Scholar
  26. 26.
    Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES, Phillips MS, et al. (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genet. 33, 382–387.CrossRefGoogle Scholar
  27. 27.
    Zhang K, Calabrese P, Nordborg M, and Sun F (2002) Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet., 71, 1386–1394.CrossRefGoogle Scholar
  28. 28.
    Meng Z, Zaykin DV, Xu CF, Wagner M, and Ehm MG (2004) Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. Am. J. Hum. Genet., 73:115–130.CrossRefGoogle Scholar
  29. 29.
    Anderson EC, and Novembre J (2003) Finding haplotype block boundaries by using the minimum-description-length principle. American Journal of Human Genetics, 73:336–354.CrossRefGoogle Scholar
  30. 30.
    Mannila H, Koivisto M, Perola M, Varilo T, Hennah W, Ekelund J, Lukk M, Peltonen L, and Ukkonen E (2003) Minimum description length block finder, a method to identify haplotype blocks and to compare the strength of block boundaries. Am. J. Hum. Genet., 73, 86–94.CrossRefGoogle Scholar
  31. 31.
    Zhang K, Deng M, Chen T, Waterman MS, and Sun F (2002) A dynamic programming algorithm for haplotype block partitioning. Proc. Natl Acad. Sci. USA, 99, 7335–7339.MATHCrossRefGoogle Scholar
  32. 32.
    Beckmann L, Thomas DC, Fischer C, and Chang-Claude J (2005) Haplotype sharing analysis using Mantel statistics, Human Heredity, 59:67–78.CrossRefGoogle Scholar
  33. 33.
    Levin AM, Ghosh D, et al. (2005) A model-based scan statistics for identifying extreme chromosomal regions of gene expression in human tumors. Bioinformatics 21:2867–2874.CrossRefGoogle Scholar
  34. 34.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, and Poland GA (2002) Score test for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–443.CrossRefGoogle Scholar
  35. 35.
    Nothnagel M, Furst R, and Rohde K (2002) Entropy as a measure for linkage disequilibrium over multilocus haplotype blocks. Hum Hered, 54:186–198.CrossRefGoogle Scholar
  36. 36.
    Hampe J, Schreiber S, and Krawczak M (2003) Entropy-based SNP selection for genetic association studies. Hum Genet. 114:36–43.CrossRefGoogle Scholar
  37. 37.
    Zhao J, Boerwinkle E, and Xiong M (2005) An entropy-based statistic for genomewide association studies. American Journal of Human Genetics, 77:27–40.CrossRefGoogle Scholar
  38. 38.
    Zaykin DV, Zhivotovsky LA, et al. (2002) Truncated product method for combining P-values. Genet Epidemio l22:170–185.CrossRefGoogle Scholar
  39. 39.
    Ott J (2004) Issues in association analysis: error control in case-control association studies for disease gene discovery. Human Heredity, 58:171–174.CrossRefGoogle Scholar
  40. 40.
    He J and Zelikovsky A (2006) MLR-tagging informative SNP selection for unphased genotypes based on multiple linear regression, Bioinformatics, 22(20):2558–2561.CrossRefGoogle Scholar
  41. 41.
    Durrant C, Zondervan KT, Lon R, Cardon L, Hunt S, Deloukas P, and Morris AP (2004) Linkage Disequilibrium Mapping via Cladistic Analysis of Single-Nucleotide Polymorphism Haplotypes. Am. J. Hum. Genet. 75, 35–43.CrossRefGoogle Scholar
  42. 42.
    Baker SG (2005) A simple loglinear model for haplotype effects in a case-control study involving two unphased genotypes, Statistical Applications in Genetics and Molecular Biology, 4(1):14.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Tzeng J, Wang C, Kao J, and Hsiao CK (2006) Regression-based association analysis with clustered haplotypes through use of genotypes. American Journal of Human Genetics, 78(2):231–242.CrossRefGoogle Scholar
  44. 44.
    Burkett K, McNeney B, and Graham J (2004) A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Human Heredity, 57:200–206.CrossRefGoogle Scholar
  45. 45.
    Greenspan G and Geiger D (2004) Model-based inference of haplotype block variation. J. Comp. Biol. 11, 493–504.CrossRefGoogle Scholar
  46. 46.
    Greenspan G and Geiger D (2006) Modeling Haplotype Block Variation Using Markov Chains, Genetics, 172(4): 2583–2599.CrossRefGoogle Scholar
  47. 47.
    Thomas DC, Stram DO, Conti D, Molitor J, and Marjoram P (2003) Bayesian spatial modeling of haplotype associations, Human Heredity, 56:32–40.CrossRefGoogle Scholar
  48. 48.
    Schwender H and Ickstadt K (2006) Identification of SNP Interactions Using Logic Regression. http://www.sfb475.uni-dortmund.de/berichte/tr31-06.pdf (preprint)
  49. 49.
    Verzilli CJ, Stallard N, and Whittaker JC (2006) Bayesian graphical models for genomewide association studies. American Journal of Human Genetics, 79(1):100–112.CrossRefGoogle Scholar
  50. 50.
    Ott J (2001) Neural networks and disease association studies. American Journal of Medical Genetics, Volume 105, Issue 1, 60–61.CrossRefMathSciNetGoogle Scholar
  51. 51.
    Clark TG, De Iorio M, Griffiths RC, and Farrall M (2005) Finding associations in dense genetic maps: a genetic algorithm approach. Human Heredity, 60:97–108.CrossRefGoogle Scholar
  52. 52.
    Lam JC, Roeder K, and Devlin B (2000) Haplotype fine mapping by evolutionary trees. Am. J. Hum. Genet. 66 (2), 659–673.CrossRefGoogle Scholar
  53. 53.
    Chang C, Huang Y, and Chao K (2006) A greedier approach for finding tag SNPs, Bioinformatics, 22(6):685–691.CrossRefGoogle Scholar
  54. 54.
    Li J and Jiang T (2005) Haplotype-based linkage disequilibrium mapping via direct data mining, Bioinformatics, 21:4384–4393.CrossRefGoogle Scholar
  55. 55.
    Lin Z and Altman RB (2004) Finding haplotype tagging SNPs by use of principal components analysis. Am. J. Hum. Genet. 75: 850–861.CrossRefGoogle Scholar
  56. 56.
    Horne BD and Camp NJ (2004) Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genetic Epidemiology, 26(1):11–21.CrossRefGoogle Scholar
  57. 57.
    Ao S, Yip K, Ng M, Cheung D, Fong PY, Melhado I, and Sham PC (2005) CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics, 21(8):1735–1736.CrossRefGoogle Scholar
  58. 58.
    Kooperberg C, Ruczinski I, LeBlanc M, and Hsu L (2001) Sequence Analysis Using Logic Regression. Genetic Epidemiology, 21:626–631.Google Scholar
  59. 59.
    Moore JH (2004) Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu, D. (eds.) Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data, IGI.Google Scholar
  60. 60.
    Liu JS, Sabatti C, Teng J, Keats BJ, and Risch N (2001) Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Research 11 (10), 1716–1724.CrossRefGoogle Scholar
  61. 61.
    Molitor J, Marjoram P, and Thomas D (2003) Fine-Scale Mapping of Disease Genes with Multiple Mutations via Spatial Clustering Techniques. Am. J. Hum. Genet. 73, 1368–1384.CrossRefGoogle Scholar
  62. 62.
    Toivonen HT, Onkamo P, Vasko K, Ollikainen V, Sevon P, Mannila H, Herr M, and Kere J (2000) Data mining applied to linkage disequilibrium mapping. Am. J. Hum. Genet. 67 (1), 133–145.CrossRefGoogle Scholar
  63. 63.
    Ritchie MD, White BC, Parker JS, Hahn LW, and Moore JH (2003) PMID Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4:28.CrossRefGoogle Scholar
  64. 64.
    Banzhaf W, Beslon G, Christensen S, Foster JA, Kepes F, Lefort V, Miller JF, Radman M, and Ramsden JJ (2006) Guidelines: From artificial evolution to computational evolution: a research agenda. Nat Rev Genet. Sep;7(9):729–35.CrossRefGoogle Scholar
  65. 65.
    Moore JH and White BC (2006a) Exploiting expert knowledge for genome-wide genetic analysis using genetic programming. In: Runarsson et al. (eds.) Parallel Problem Solving from Nature - PPSN IX, Lecture Notes in Computer Science 4193, 969–977.CrossRefGoogle Scholar
  66. 66.
    Foster JA. (2001) Evolutionary computation. Nat Rev Genet. 2(6):428–36.CrossRefGoogle Scholar
  67. 67.
    Motsinger AA, Lee SL, Mellick G, and Ritchie MD (2006) GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics. 25;7(1):39.Google Scholar
  68. 68.
    Motsinger AA, Fanelli TJ, and Ritchie MD (2006) Power of Grammatical Evolution Neural Networks to Detect Gene-Gene Interactions in the Presence of Error Common to Genetic Epidemiological Studies. International Genetic Epidemiology Society 15th Annual Meeting.Google Scholar
  69. 69.
    Pedrycz W (1997) Computational Intelligence: An Introduction. Boca Raton, FL, CRCMATHGoogle Scholar
  70. 70.
    (2000) Pedrycz W and Vasilakos A (2000) Computational Intelligence in Telecommunications Networks. Boca Raton, FL, CRC.Google Scholar
  71. 71.
    Turing AM (1956) Can a machine think? In: Newman, J.R. (Ed.), The World of Mathematics, vol. 4. Simon and Schuster, New York, 2122.Google Scholar
  72. 72.
    Vasilakos A and Pedrycz W (2006) Ambient Intelligence, Wireless Networking, Ubiquitous Computing. ArtecHouse, MA, USA.Google Scholar
  73. 73.
    Fogel GB and Corne DW (2002) Evolutionary Computation in Bioinformatics. Morgan Kaufmann, San Francisco.Google Scholar
  74. 74.
    Moore JH and White BC (2006b) Detecting Epistatic Needles in Genome-Wide Haystacks. American human genetics conferences.Google Scholar
  75. 75.
    Hubley RM, Zitzler E, Roach JC (2003) Evolutionary algorithms for the selection of single nucleotide polymorphisms. BMC Bioinformatics 4:30.CrossRefGoogle Scholar
  76. 76.
    Moore JH and Hahn LW (2002) A cellular automata approach to detecting interactions among single-nucleotide polymorphisms in complex multifactorial diseases. Pac Symp Biocomput. 53–64.Google Scholar
  77. 77.
    Onkamo P and Toivonen H (2006) A survey of data mining methods for linkage disequilibrium mapping. Human Genomics, Vol 2(1), 336–340(5).Google Scholar
  78. 78.
    Salem, RM, Wessel J, and Schork, NJ (2005) A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Human Genomics, Vol 2(1) pp. 39–66(28).Google Scholar
  79. 79.
    Molitor J, Marjoram P, Conti D, and Thomas D (2004) A survey of current Bayesian gene mapping methods. Human Genomics, Vol 1(5) pp. 371–374(4).Google Scholar
  80. 80.
    Shah SC and Kusiak A (2004) Data mining and genetic algorithm based gene/SNP selection. Artif Intell Med. (3):183–96.Google Scholar
  81. 81.
    McKinney BA, Reif DM, Ritchie MD, and Moore JH (2006) Machine Learning for Detecting Gene-Gene Interactions: A Review. Applied Bioinformatics. 5(2):77–88.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Arpad Kelemen
    • Yulan Liang
      • 1
    • Athanasios Vasilakos
      • 2
    1. 1.Department of Biostatistics University at BuffaloThe State University of New YorkBuffaloUSA
    2. 2.Dept. of Computer and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece

    Personalised recommendations