Segmentation of Q-Ball Images Using Statistical Surface Evolution

  • Maxime Descoteaux
  • Rachid Deriche
Conference paper

DOI: 10.1007/978-3-540-75759-7_93

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)
Cite this paper as:
Descoteaux M., Deriche R. (2007) Segmentation of Q-Ball Images Using Statistical Surface Evolution. In: Ayache N., Ourselin S., Maeder A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. MICCAI 2007. Lecture Notes in Computer Science, vol 4792. Springer, Berlin, Heidelberg

Abstract

In this article, we develop a new method to segment Q-Ball imaging (QBI) data. We first estimate the orientation distribution function (ODF) using a fast and robust spherical harmonic (SH) method. Then, we use a region-based statistical surface evolution on this image of ODFs to efficiently find coherent white matter fiber bundles. We show that our method is appropriate to propagate through regions of fiber crossings and we show that our results outperform state-of-the-art diffusion tensor (DT) imaging segmentation methods, inherently limited by the DT model. Results obtained on synthetic data, on a biological phantom, on real datasets and on all 13 subjects of a public QBI database show that our method is reproducible, automatic and brings a strong added value to diffusion MRI segmentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Maxime Descoteaux
    • 1
  • Rachid Deriche
    • 1
  1. 1.Odyssée Project Team, INRIA/ENS/ENPC, INRIA Sophia AntipolisFrance

Personalised recommendations