Simultaneous Segmentation, Kinetic Parameter Estimation, and Uncertainty Visualization of Dynamic PET Images

  • Ahmed Saad
  • Ben Smith
  • Ghassan Hamarneh
  • Torsten Möller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)

Abstract

We develop a segmentation technique for dynamic PET incorporating the physiological parameters for different regions via kinetic modeling. We demonstrate the usefulness of our technique on fifteen [11C]Raclopride simulated PET images. We show qualitatively and quantitatively that the physiologically based algorithm outperforms two classical segmentation techniques. Further, we derive a formula to compute and visualize the uncertainty encountered during the segmentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morris, E.D., Endres, C.J., Schmidt, K.C., Christian, B.T.: Kinetic modeling in Positron Emission Tomography. In: Wernick, M., Aarsvold, J.N. (eds.) Emission Tomography: The Fundamentals of PET and SPECT, Academic, San Diego (2004)Google Scholar
  2. 2.
    Barber, D.C.: The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys. Med. Biol. 25, 283–292 (1980)CrossRefGoogle Scholar
  3. 3.
    Di Paola, R., Bazin, J.P., Aubry, F., Aurengo, A., Cavailloles, F., Herry, J.Y., Kahn, E.: Handling of dynamic sequences in nuclear medicine. IEEE Trans. Nucl. Sci. 29, 1310–1321 (1982)CrossRefGoogle Scholar
  4. 4.
    Lin, K.P., Lou, S.L., Yu, C.L., Chung, B.T., Wu, L.C., Liu, R.S.: Markov random field method for dynamic PET image segmentation. In: Proceedings of the SPIE Image Processing, pp. 1198–1204 (1998)Google Scholar
  5. 5.
    Guo, H., Renaut, R., Chen, K., Reiman, E.: Clustering huge data sets for parametric PET imaging. Journal of Biosystems 71, 81–92 (2001)CrossRefGoogle Scholar
  6. 6.
    Liptrot, M., Adams, K., Martiny, L., Pinborg, L., Lonsdale, M., Olsen, N., Holm, S., Svarer, C., Knudsen, G.M.: Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling. NeuroImage 21(2), 483–493 (2004)CrossRefGoogle Scholar
  7. 7.
    Kamasak, M.E., Bayraktarb, B.: Unsupervised clustering of dynamic PET images on the projection domain. In: Proceedings of the SPIE Medical Imaging, pp. 1539–1548 (2006)Google Scholar
  8. 8.
    Carson, R.E.: Tracer kinetic modeling in PET. In: Bailey, D.L., Townsend, D.W., Walk, P.E., Maisey, M.N. (eds.) Positron Emission Tomography, Basic Sciences, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Muzic, R., Cornelius, S.: COMKAT: compartment model kinetic analysis tool. J. Nucl. Med. 42(4), 636–645 (2001)Google Scholar
  10. 10.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: Efficient k-means clustering algorithm: Analysis and implementation. IEEE PAMI 24, 881–892 (2002)Google Scholar
  11. 11.
    Besag, J.: On the statistical analysis of dirty pictures. Journal of Royal Statistics 48, 259–302 (1986)MATHMathSciNetGoogle Scholar
  12. 12.
    Reilhac, A., Batan, G., Michel, C., Grova, C., Tohka, J., Costes, N., Evans, A.C.: Validation of PET SORTEO: a platform for simulating realistic PET studies and development of a database of simulated PET volumes. IEEE Trans. Nucl. Sci. 52, 1321–1328 (2004)CrossRefGoogle Scholar
  13. 13.
    Lammertsma, A., Bench, C., Hume, S., Osman, S., Gunn, K., Brooks, D., Frackowiak, R.: Comparison of methods for analysis of clinical [11C]raclopride studies. J. Cereb. Blood Flow Metab. 16, 42–52 (1996)CrossRefGoogle Scholar
  14. 14.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ahmed Saad
    • 1
    • 2
  • Ben Smith
    • 1
    • 2
  • Ghassan Hamarneh
    • 1
  • Torsten Möller
    • 2
  1. 1.Medical Image Analysis Lab 
  2. 2.Graphics, Usability, and Visualization Lab, School of Computing Science, Simon Fraser UniversityCanada

Personalised recommendations