Dynamic MRI Scan Plane Control for Passive Tracking of Instruments and Devices

  • S. P. DiMaio
  • E. Samset
  • G. Fischer
  • I. Iordachita
  • G. Fichtinger
  • F. Jolesz
  • C. M. Tempany
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)

Abstract

This paper describes a novel image-based method for tracking robotic mechanisms and interventional devices during Magnetic Resonance Image (MRI)-guided procedures. It takes advantage of the multi-planar imaging capabilities of MRI to optimally image a set of localizing fiducials for passive motion tracking in the image coordinate frame. The imaging system is servoed to adaptively position the scan plane based on automatic detection and localization of fiducial artifacts directly from the acquired image stream. This closed-loop control system has been implemented using an open-source software framework and currently operates with GE MRI scanners. Accuracy and performance were evaluated in experiments, the results of which are presented here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Amico, A.V., Tempany, C.M., Cormack, R., Hata, N., Jinzaki, M., Tuncali, K., Weinstein, M., Richie, J.P.: Transperineal magnetic resonance image guided prostate biopsy. Journal of Urology 164(2), 385–387 (2000)CrossRefGoogle Scholar
  2. 2.
    Silverman, S.G., Collick, B.D., Figueira, M.R., Khorasani, R., Adams, D.F., Newman, R.W., Topulos, G.P., Jolesz, F.A.: Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197(1), 175–181 (1995)Google Scholar
  3. 3.
    Dumoulin, C.L., Souza, S.P., Darrow, R.D.: Real-time position monitoring of invasive devices using magnetic resonance. Magnetic Resonance in Medicine 29, 411–415 (1993)CrossRefGoogle Scholar
  4. 4.
    Derbyshire, J.A., Wright, G.A., Henkelman, R.M., Hinks, R.S.: Dynamic scan-plane tracking using MRI position monitoring. J. Mag. Res. Imag. 8(4), 924–932 (1998)CrossRefGoogle Scholar
  5. 5.
    Hushek, S.G., Fetics, B., Moser, R.M., Hoerter, N.F., Russell, L.J., Roth, A., Polenur, D., Nevo, E.: Initial Clinical Experience with a Passive Electromagnetic 3D Locator System. In: 5th Interventional MRI Symp., Boston MA, pp. 73–74 (2004)Google Scholar
  6. 6.
    Krieger, A., Fichtinger, G., Metzger, G., Atalar, E., Whitcomb, L.L.: A hybrid method for 6-dof tracking of mri-compatible robotic interventional devices. In: Proceedings of the IEEE Int. Conf. on Rob. and Auto., Florida, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  7. 7.
    de Oliveira, A., Rauschenberg, J., Beyersdorff, D., Bock, W.S.M.: Automatic detection of passive marker systems using phase-only cross correlation. In: The 6th Interventional MRI Symposium, Leipzig, Germany (2006)Google Scholar
  8. 8.
    DiMaio, S., Kacher, D., Ellis, R., Fichtinger, G., Hata, N., Zientara, G., Panych, L., Kikinis, R., Jolesz, F.: Needle artifact localization in 3t mr images. In: Studies in Health Technologies and Informatics (MMVR), vol. 119, pp. 120–125 (2005)Google Scholar
  9. 9.
    DiMaio, S., Fischer, G., Haker, S., Hata, N., Iordachita, I., Tempany, C., Kikinis, R., Fichtinger, G.: A system for mri-guided prostate interventions. In: Int. Conf. on Biomed. Rob. and Biomechatronics, Pisa, Italy, IEEE/RAS-EMBS (2006)Google Scholar
  10. 10.
    Fischer, G., et al.: Development of a robotic assistant for needle-based transperineal prostate interventions in mri. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. LNCS, Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Susil, R., Anderson, J., Taylor, R.: A single image registration method for ct-guided interventions. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 798–808. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Reitmayr, G., Schmalstieg, D.: Opentracker-an open software architecture for reconfigurable tracking based on xml. In: IEEE Virtual Reality Conference, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  13. 13.
    Samset, E., Hans, A., von Spiczak, J., DiMaio, S., Ellis, R., Hata, N., Jolesz, F.: The SIGN: A dynamic and extensible software framework for Image-Guided Therapy. In: Workshop on Open Source and Data for MICCAI, Insight-Journal (2006), http://hdl.handle.net/1926/207
  14. 14.
    Lee, S., Fichtinger, G., Chirikjian, G.S.: Numerical algorithms for spatial registration of line fiducials from cross-sectional images. Medical Physics 29(8), 1881–1891 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. P. DiMaio
    • 1
  • E. Samset
    • 1
    • 2
  • G. Fischer
    • 3
  • I. Iordachita
    • 3
  • G. Fichtinger
    • 3
  • F. Jolesz
    • 1
  • C. M. Tempany
    • 1
  1. 1.Brigham and Women’s Hospital, Harvard Medical School, Boston, MAUSA
  2. 2.Oslo UniversityNorway
  3. 3.Johns Hopkins University, Baltimore, MAUSA

Personalised recommendations