Advertisement

Improving Temporal Fidelity in k-t BLAST MRI Reconstruction

  • Andreas Sigfridsson
  • Mats Andersson
  • Lars Wigström
  • John-Peder Escobar Kvitting
  • Hans Knutsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)

Abstract

Studies of myocardial motion using magnetic resonance imaging usually require multiple breath holds and several methods have been proposed in order to reduce the scan time. Rapid imaging using k-t BLAST has gained much attention with its high reduction factors and image quality. Temporal smoothing, however, may reduce the accuracy when assessing cardiac function. In the present work, a modified reconstruction filter is proposed, that preserves more of the high temporal frequencies. Artificial decimation of a fully sampled data set was used to evaluate the reconstruction filter. Compared to the conventional k-t BLAST reconstruction, the modified filter produced images with sharper temporal delineation of the myocardial walls. Quantitative analysis by means of regional velocity estimation showed that the modified reconstruction filter produced more accurate velocity estimations.

Keywords

High Temporal Frequency Temporal Smoothing Alternative Reconstruction Multiple Breath Delay Enhancement Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kim, R., Fieno, D., Parrish, T., Harris, K., Chen, E., Simonetti, O., Bundy, J., Finn, J., Klocke, F., Judd, R.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)Google Scholar
  2. 2.
    Pruessman, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson Med. 42, 952–962 (1999)CrossRefGoogle Scholar
  3. 3.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson Med. 47, 1202–1210 (2002)CrossRefGoogle Scholar
  4. 4.
    Nayak, K.S., Pauly, J.M., Yang, P.C., Hu, B.S., Meyer, C.H., Nishimura, D.G.: Real-time interactive coronary MRA. Magn. Reson Med. 46, 430–435 (2001)CrossRefGoogle Scholar
  5. 5.
    van Vaals, J.J., Brummer, M.E., Dixon, W.T., Tuithof, H.H., Engels, H., Nelson, R C., Gerety, B.M., Chezmar, J.L., den Boer, J.A: ”Keyhole” method for accelerating imaging of contrast agent uptake. J. Magn. Reson. Imaging 3(4), 671–675 (1993)CrossRefGoogle Scholar
  6. 6.
    Doyle, M., Walsh, E., Blackwell, G., Pohost, G.: Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn. Reson. Med. 33, 163–170 (1995)CrossRefGoogle Scholar
  7. 7.
    Korosec, F.R., Frayne, R., Grist, T.M., Mistretta, C.A.: Time-resolved contrast-enhanced 3D MR angiography. Magn. Reson. Med. 36, 345–351 (1996)CrossRefGoogle Scholar
  8. 8.
    Madore, B., Glover, G.H., Pelc, N.J.: Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn. Reson. Med. 42, 813–828 (1999)CrossRefGoogle Scholar
  9. 9.
    Tsao, J., Boesiger, P., Pruessman, K.P.: k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn. Reson. Med. 50, 1031–1042 (2003)CrossRefGoogle Scholar
  10. 10.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  11. 11.
    Tsao, J., Kozerke, S., Boesiger, P., Pruessmann, K.P.: Optimizing spatiotemporal sampling for k − t BLAST and k − t SENSE: Application to high-resolution real-time cardiac steady-state free precession. Magn. Reson. Med. 53, 1372–1382 (2005)CrossRefGoogle Scholar
  12. 12.
    Andersson, K., Johansson, P., Forcheimer, R., Knutsson, H.: Backward-forward motion compensated prediction. In: ACIVS 2002. Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium, pp. 260–267 (2002)Google Scholar
  13. 13.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  14. 14.
    Knutsson, H., Andersson, M., Wiklund, J.: Advanced filter design. In: SCIA. Proceedings of the 11th Scandinavian Conference on Image Analysis, Greenland (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Sigfridsson
    • 1
    • 2
    • 3
  • Mats Andersson
    • 2
    • 3
  • Lars Wigström
    • 1
    • 3
  • John-Peder Escobar Kvitting
    • 1
    • 3
  • Hans Knutsson
    • 2
    • 3
  1. 1.Division of Clinical Physiology, Department of Medicine and Care 
  2. 2.Department of Biomedical Engineering 
  3. 3.Center for Medical Image Science and Visualization (CMIV), Linköping UniversitySweden

Personalised recommendations