Towards Subject-Specific Models of the Dynamic Heart for Image-Guided Mitral Valve Surgery

  • Cristian A. Linte
  • Marcin Wierzbicki
  • John Moore
  • Stephen H. Little
  • Gérard M. Guiraudon
  • Terry M. Peters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)

Abstract

Surgeons need a robust interventional system capable of providing reliable, real-time information regarding the position and orientation of the surgical targets and tools to compensate for the lack of direct vision and to enhance manipulation of intracardiac targets during minimally-invasive, off-pump cardiac interventions. In this paper, we describe a novel method for creating dynamic, pre-operative, subject-specific cardiac models containing the surgical targets and surrounding anatomy, and how they are used to augment the intra-operative virtual environment for guidance of valvular interventions. The accuracy of these pre-operative models was established by comparing the target registration error between the mitral valve annulus characterized in the pre-operative images and their equivalent structures manually extracted from 3D US data. On average, the mitral valve annulus was extracted with a 3.1 mm error across all cardiac phases. In addition, we also propose a method for registering the pre-operative models into the intra-operative virtual environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kypson, A.P., Felger, J.E., Nifong, L.W., Chitwood, W.R.: Robotics in valvular surgery: 2003 and beyond. Curr. Opin. Cardiol. 19, 128–133 (2004)CrossRefGoogle Scholar
  2. 2.
    Vahanian, A., Acar, C.: Percutaneaous valve procedures: what is the future? Curr. Opin. Cardiol. 20, 100–106 (2005)CrossRefGoogle Scholar
  3. 3.
    Edmunds, L.H.: Why cardiopulmonary bypass makes patients sick: strategies to control the blood-synthetic surface interface. Adv. Card. Surg. 6, 131–167 (1995)Google Scholar
  4. 4.
    McVeigh, E.R., Guttman, M.A., Lederman, R.J., Li, M., Hunt, T., Kozlov, S., Horvath, K.A.: Real-time interactive MRI-guided cardiac surgery: Aortic valve replacement using a direct apical approach. Magn. Reson. Med. 56, 958–964 (2006)CrossRefGoogle Scholar
  5. 5.
    Suematsu, Y., Marx, G.R., Stoll, J.A., Dupont, P.E., Cleveland, R.O., Howe, R.D., Triedman, J.K., Mihaljevic, T., Mora, B.N., Savord, B.J., Salgo, I.S., del Nido, P.J.: Three-dimensional echo-guided beating-heart surgery without cardiopulmonary bypass: a feasibility study. J. Thorac. Cardiovasc. Surg. 128, 579–587 (2004)CrossRefGoogle Scholar
  6. 6.
    Guiraudon, G.M.: Universal cardiac introducer. Patent Application, US 2005/0137609 A1, Appl. No. 10/736,786 (2005)Google Scholar
  7. 7.
    Vosburgh, K.G., San José Estépar, R.: Natural orifice transluminal endoscopic surgery (notes): An opportunity for augmented reality guidance. In: Stud Health Technol. Inform., vol. 125, pp. 485–490 (2007)Google Scholar
  8. 8.
    Linte, C.A., Wiles, A.D., Moore, J., Wedlake, C., Guiraudon, G.M., Jones, D.L., Bainbridge, D., Peters, T.M.: An augmented reality environment for image-guidance of off-pump mitral valve implantation. In: SPIE. Medical Imaging: Visualization and Image-Guided Procedures, vol. 6509, pp. 65090N–12 (2007)Google Scholar
  9. 9.
    Sauer, F.: Image registration: Enabling technology for image-guided surgery and therapy. In: IEEE, 27th Annual Conference of the Engineering in Medicine and Biology Society — EMBS, pp. 7242–7245. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Wierzbicki, M.: Subject-specific models of the heart from 4D images. PhD Dissertation, Medical Biophysics, The University of Western Ontario, Canada (2006)Google Scholar
  11. 11.
    Moore, J., Drangova, M., Wierzbicki, M., Barron, J., Peters, T.M.: A high-resolution dynamic heart model based on averaged MRI data. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 549–555. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, D., Rueckert, D.: Atlas-based segmentation and tracking of 3D cardiac mr images using non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Wierzbicki, M., Drangova, M., Guiraudon, G.M., Peters, T.M.: Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med. Image. Anal. 8, 387–401 (2004)CrossRefGoogle Scholar
  14. 14.
    Wiles, A.D., Guiraudon, G.M., Moore, J., Wedlake, C., Linte, C.A., Jones, D.L., Bainbridge, D., Peters, T.M.: Navigation accuracy for an intracardiac procedure using virtual reality-enhanced ultrasound. In: SPIE. Medical Imaging: Visualization and Image-Guided Procedures, vol. 6509, pp. 61410W–10 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cristian A. Linte
    • 1
    • 2
  • Marcin Wierzbicki
    • 2
  • John Moore
    • 2
  • Stephen H. Little
    • 3
    • 4
  • Gérard M. Guiraudon
    • 1
    • 4
  • Terry M. Peters
    • 1
    • 2
  1. 1.Biomedical Engineering Graduate Program, University of Western Ontario 
  2. 2.Imaging Research Laboratories, Robarts Research Institute 
  3. 3.Division of Cardiology, University of Western Ontario 
  4. 4.Canadian Surgical Technologies & Advanced Robotics London ONCanada

Personalised recommendations