Advertisement

A Coupled Finite Element Model of Tumor Growth and Vascularization

  • Bryn A. Lloyd
  • Dominik Szczerba
  • Gábor Székely
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4792)

Abstract

We present a model of solid tumor growth which can account for several stages of tumorigenesis, from the early avascular phase to the angiogenesis driven proliferation. The model combines several previously identified components in a consistent framework, including neoplastic tissue growth, blood and oxygen transport, and angiogenic sprouting. First experiments with the framework and comparisons with observations made on solid tumors in vivo illustrate the plausibility of the approach. Explanations of several experimental observations are naturally provided by the model. To the best of our knowledge this is the first report of a model coupling tumor growth and angiogenesis.

Keywords

Vascular Endothelial Growth Factor Oxygen Partial Pressure Cellular Automaton Endothelial Cell Density Vascular Endothelial Growth Factor Isoforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jang, S.H., Wientjes, M.G., Lu, D., Au, J.L.S.: Drug delivery and transport to solid tumors. Pharmaceutical Research 20(9), 1337–1350 (2003)CrossRefGoogle Scholar
  2. 2.
    Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000)CrossRefGoogle Scholar
  3. 3.
    Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biology 66(5), 1039–1091 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology 56(1), 229–242 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. Journal of Mathematical Biology V46(3), 191–224 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Tracqui, P.: From passive diffusion to active cellular migration in mathematical models of tumour invasion. Acta Biotheoretica 43(4), 443–464 (1995)CrossRefGoogle Scholar
  7. 7.
    Mallet, D.G., Pillis, L.G.D.: A cellular automata model of tumor-immune system interactions. Journal of Theoretical Biology 239(3), 334–350 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kyriacou, S.K., et al.: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans. Med. Imaging 18(7), 580–592 (1999)CrossRefGoogle Scholar
  9. 9.
    Mohamed, A., Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 400–408. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Clatz, O., et al.: Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with mass effect. IEEE Trans. Med. Imaging 24(10), 1334–1346 (2005)CrossRefGoogle Scholar
  11. 11.
    Goriely, A., et al.: Elastic growth models. In: Proc. of BIOMAT-2006 (2007)Google Scholar
  12. 12.
    Wasserman, R., et al.: A patient-specific in vivo tumor model. Mathematical Biosciences 136(2), 111–140 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biology 60(5), 857–899 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Levine, H.A., et al.: Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biology 63(5), 801–863 (2001)CrossRefGoogle Scholar
  15. 15.
    Plank, M.J., Sleeman, B.D.: Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biology 66(6), 1785–1819 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Szczerba, D., Székely, G.: Simulating vascular systems in arbitrary anatomies. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 641–648. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Macklin, P., Lowengrub, J.: Nonlinear simulation of the effect of microenvironment on tumor growth. Journal of Theoretical Biology 245(4), 677–704 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Schöberl, J.: Netgen - an advancing front 2d/3d-mesh generator based on abstract rules. Computing and Visualization in Science 1, 41–52 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Salathe, E.P., Xu, Y.H.: Non-linear phenomena in oxygen transport to tissue. Journal of Mathematical Biology 30(2), 151–160 (1991)zbMATHCrossRefGoogle Scholar
  20. 20.
    Gabhann, F.M., Popel, A.S.: Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo. Am. J. Physiol. Heart Circ. Physiol. 292(1), 459–474 (2007)CrossRefGoogle Scholar
  21. 21.
    Winsor, C.P.: The Gompertz Curve as a Growth Curve. National Academy of Sciences 18, 1–8 (1932)CrossRefGoogle Scholar
  22. 22.
    Walocha, J.A., et al.: Vascular system of intramural leiomyomata revealed by corrosion casting and scanning electron microscopy. Hum. Repr. 18(5), 1088–1093 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bryn A. Lloyd
    • 1
  • Dominik Szczerba
    • 1
  • Gábor Székely
    • 1
  1. 1.Computer Vision Laboratory, ETH ZürichSwitzerland

Personalised recommendations