Inter-subject Modelling of Liver Deformation During Radiation Therapy

  • M. von Siebenthal
  • Gáber Székely
  • A. Lomax
  • Philippe C. Cattin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4791)


This paper presents a statistical model of the liver deformation that occurs in addition to the quasi-periodic respiratory motion. Having an elastic but still compact model of this variability is an important step towards reliable targeting in radiation therapy. To build this model, the deformation of the liver at exhalation was determined for 12 volunteers over roughly one hour using 4DMRI and subsequent non-rigid registration. The correspondence between subjects was established based on mechanically relevant landmarks on the liver surface. Leave-one-out experiments were performed to evaluate the accuracy in predicting the liver deformation from partial information, such as a point tracked by ultrasound imaging. Already predictions from a single point strongly reduced the localisation errors, whilst the method is robust with respect to the exact choice of the measured predictor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, S.C., Hill, A.L., Holmes, R.B., et al.: Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br. J. Radiol. 67, 1096–1102 (1994)CrossRefGoogle Scholar
  2. 2.
    Mageras, G.S., Yorke, E., Rosenzweig, K., et al.: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J. App. Clin. Med. Phys. 2, 191–200 (2001)CrossRefGoogle Scholar
  3. 3.
    von Siebenthal, M., Székely, G., Gamper, U., et al.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547–1564 (2007)CrossRefGoogle Scholar
  4. 4.
    Davatzikos, C., Shen, D., Mohamed, A., Kyriacou, S K: A framework for predictive modeling of anatomical deformations. IEEE T. Med. Imaging 20, 836–843 (2001)CrossRefGoogle Scholar
  5. 5.
    Blackall, J.M., Penney, G.P., King, A.P., Hawkes, D.J.: Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation. IEEE T. Med. Imaging 24, 1405–1416 (2005)CrossRefGoogle Scholar
  6. 6.
    Perperidis, D., et al.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L I, et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE T. Med. Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Styner, M., et al.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Hug, J., Brechbühler, C., Székely, G.: Model-based initialisation for segmentation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 290–306. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. von Siebenthal
    • 1
  • Gáber Székely
    • 1
  • A. Lomax
    • 2
  • Philippe C. Cattin
    • 1
  1. 1.Computer Vision Laboratory, ETH Zurich, 8092 ZurichSwitzerland
  2. 2.Paul Scherrer Institut, 5232 Villigen PSISwitzerland

Personalised recommendations