Advertisement

Magneto-Optic Tracking of a Flexible Laparoscopic Ultrasound Transducer for Laparoscope Augmentation

  • Marco Feuerstein
  • Tobias Reichl
  • Jakob Vogel
  • Armin Schneider
  • Hubertus Feussner
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4791)

Abstract

In abdominal surgery, a laparoscopic ultrasound transducer is commonly used to detect lesions such as metastases. The determination and visualization of position and orientation of its flexible tip in relation to the patient or other surgical instruments can be of much help to (novice) surgeons utilizing the transducer intraoperatively. This difficult subject has recently been paid attention to by the scientific community [1,2,3,4,5,6]. Electromagnetic tracking systems can be applied to track the flexible tip. However, the magnetic field can be distorted by ferromagnetic material. This paper presents a new method based on optical tracking of the laparoscope and magneto-optic tracking of the transducer, which is able to automatically detect field distortions. This is used for a smooth augmentation of the B-scan images of the transducer directly on the camera images in real time.

Keywords

Root Mean Square Augmented Reality Distortion Function Laparoscopic Ultrasound Dual Quaternion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Harms, J., et al.: Three-dimensional navigated laparoscopic ultrasonography. Surgical Endoscopy 15, 1459–1462 (2001)CrossRefGoogle Scholar
  2. 2.
    Leven, J., et al.: Davinci canvas: A telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Nakamoto, M., et al.: 3d ultrasound system using a magneto-optic hybrid tracker for augmented reality visualization in laparoscopic liver surgery. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Ellsmere, J., et al.: A new visualization technique for laparoscopic ultrasonography. Surgery 136, 84–92 (2004)CrossRefGoogle Scholar
  5. 5.
    Krücker, J., et al.: An electro-magnetically tracked laparoscopic ultrasound for multi-modality minimally invasive surgery. In: CARS (2005)Google Scholar
  6. 6.
    Kleemann, M., et al.: Laparoscopic ultrasound navigation in liver surgery: technical aspects and accuracy. Surgical Endoscopy 20, 726–729 (2006)CrossRefGoogle Scholar
  7. 7.
    Voros, S., Long, J.A., Cinquin, P.: Automatic localization of laparoscopic instruments for the visual servoing of an endoscopic camera holder. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hummel, J.B., et al.: Design and application of an assessment protocol for electromagnetic tracking systems. Medical Physics 32, 2371–2379 (2005)CrossRefGoogle Scholar
  9. 9.
    Nafis, C., Jensen, V., Beauregard, L., Anderson, P.: Method for estimating dynamic em tracking accuracy of surgical navigation tools. In: Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display (2006)Google Scholar
  10. 10.
    Kindratenko, V.V.: A survey of electromagnetic position tracker calibration techniques. Virtual Reality: Research, Development, and Applications 5, 169–182 (2000)CrossRefGoogle Scholar
  11. 11.
    Birkfellner, W., et al.: Concepts and results in the development of a hybrid tracking system for cas. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Sielhorst, T., Feuerstein, M., Traub, J., Kutter, O., Navab, N.: Campar: A software framework guaranteeing quality for medical augmented reality. International Journal of Computer Assisted Radiology and Surgery 1, 29–30 (2006)Google Scholar
  13. 13.
    Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal of Robotics Research 18, 286–298 (1999)CrossRefGoogle Scholar
  14. 14.
    Yamaguchi, T., et al.: Development of a camera model and calibration procedure for oblique-viewing endoscopes. Computer Aided Surgery 9, 203–214 (2004)CrossRefGoogle Scholar
  15. 15.
    Treece, G.M., et al.: High-definition freehand 3-d ultrasound. Ultrasound in Medicine and Biology 29, 529–546 (2003)CrossRefGoogle Scholar
  16. 16.
    Langø, T.: Ultrasound Guided Surgery: Image Processing and Navigation. PhD thesis, Norwegian University of Science and Technology (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marco Feuerstein
    • 1
  • Tobias Reichl
    • 1
  • Jakob Vogel
    • 1
  • Armin Schneider
    • 2
  • Hubertus Feussner
    • 2
  • Nassir Navab
    • 1
  1. 1.Computer-Aided Medical Procedures (CAMP), TUM, MunichGermany
  2. 2.Department of Surgery, Klinikum rechts der Isar, TUM, MunichGermany

Personalised recommendations