Real-Time MR Diffusion Tensor and Q-Ball Imaging Using Kalman Filtering

  • C. Poupon
  • F. Poupon
  • A. Roche
  • Y. Cointepas
  • J. Dubois
  • J. -F. Mangin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4791)

Abstract

Magnetic resonance diffusion imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LeBihan, D., Breton, E., Lallemand, D.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)Google Scholar
  2. 2.
    Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance 103, 247–254 (1994)Google Scholar
  3. 3.
    Tuch, D.: Diffusion MRI of complex tissue structure. PhD thesis, Harvard-MIT (2002)Google Scholar
  4. 4.
    Roche, A., Pinel, P., Dehaene, S., Poline, J.-B.: Solving incrementally the fitting and detection problems in fMRI time series. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 719–726. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)CrossRefGoogle Scholar
  6. 6.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: A fast and robust ODF estimation algorithm in Q-ball imaging. In: Proc. ISBI 2006, Arlington, USA, pp. 81–84 (2006)Google Scholar
  7. 7.
    Ayache, N.: Artificial vision for mobile robots. The MIT Press, Cambridge, USA (1991)Google Scholar
  8. 8.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter. In: SIGGRAPH 2001 course 8, In Computer Graphics, Annual Conference on Computer Graphics & Interactive Techniques, Cambridge, USA (1991)Google Scholar
  9. 9.
    Jones, D.: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn. Reson. Med. 51, 807–815 (2004)CrossRefGoogle Scholar
  10. 10.
    Dubois, J., Poupon, C., Lethimonnier, F., Le Bihan, D.: Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets. MAGMA 19, 134–143 (2006)CrossRefGoogle Scholar
  11. 11.
    Khachaturian, M.-H., Wisco, J.-J., Tuch, D.: Boosting the sampling efficiency of q-Ball imaging using multiple wavevector fusion. Magn. Reson. Med. 57, 289–296 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. Poupon
    • 1
    • 2
  • F. Poupon
    • 1
    • 2
  • A. Roche
    • 1
    • 2
  • Y. Cointepas
    • 1
    • 2
  • J. Dubois
    • 3
  • J. -F. Mangin
    • 1
    • 2
  1. 1.CEA Neurospin - Bât. 145, 91191 Gif-sur-YvetteFrance
  2. 2.IFR49, 91191 Gif-sur-YvetteFrance
  3. 3.Faculté de médecine, Université de GenèveSwitzerland

Personalised recommendations