Advertisement

Statistical and Topological Atlas Based Brain Image Segmentation

  • Pierre-Louis Bazin
  • Dzung L. Pham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4791)

Abstract

This paper presents a new atlas-based segmentation framework for the delineation of major regions in magnetic resonance brain images employing an atlas of the global topological structure as well as a statistical atlas of the regions of interest. A segmentation technique using fast marching methods and tissue classification is proposed that guarantees strict topological equivalence between the segmented image and the atlas. Experimental validation on simulated and real brain images shows that the method is accurate and robust.

Keywords

Magnetic Resonance Brain Image Manual Segmentation Medical Image Computing Brain Segmentation Atlas Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Medical Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  2. 2.
    Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)CrossRefGoogle Scholar
  3. 3.
    Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Trans. Medical Imaging 16(6), 864–877 (1997)CrossRefGoogle Scholar
  4. 4.
    Shen, D., Davatzikos, C.: Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Medical Imaging 21(11) (2002)Google Scholar
  5. 5.
    Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptative bases algorithm for intensity-based nonrigid image registration. IEEE Trans. Medical Imaging 22(11), 1470–1479 (2003)CrossRefGoogle Scholar
  6. 6.
    Ciofolo, C., Barillot, C.: Brain segmentation with competitive level sets and fuzzy control. In: Proc. Int. Conf. Information Processing in Medical Imaging, Glenwood Springs (2005)Google Scholar
  7. 7.
    Pohl, K.M., Fisher, J., Levitt, J.J., Shenton, M.E., Kikins, R., Grimson, W.E.L., Wells, W.M.: A unifying approach to registration, segmentation and intensity correction. In: Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Palm Springs (2005)Google Scholar
  8. 8.
    Bazin, P.L., Pham, D.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Medical Imaging 26(4), Special Issue on Computational Neuroanatomy (2007)Google Scholar
  9. 9.
    Rousson, M., Xu, C.: A general framework for image segmentation using ordered spatial dependency. In: Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Copenhagen (2006)Google Scholar
  10. 10.
    Pohl, K.M., Fisher, J., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikins, R., Wells, W.M.: Logarithm odds maps for shape representation. In: Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Copenhagen (2006)Google Scholar
  11. 11.
    Pham, D., Bazin, P.L.: Simultaneous registration and tissue classification using clustering algorithms. In: Proc. Int. Symposium on Biomedical Imaging, Arlington (2006)Google Scholar
  12. 12.
    Worth, A.: Internet brain segmentation repository (1996), http://www.cma.mgh.harvard.edu/ibsr/
  13. 13.
    Pham, D.L.: Spatial models for fuzzy clustering. Computer Vision and Image Understanding 84, 285–297 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete surfaces. Int. J. Computer Vision 10(2), 183–197 (1993)CrossRefGoogle Scholar
  15. 15.
    Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Analysis and Machine Intelligence 25(6), 755–768 (2003)CrossRefGoogle Scholar
  16. 16.
    Mangin, J.F., Frouin, V., Bloch, I., Regis, J., Lopez-Krahe, J.: From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Mathematical Imaging and Vision 5, 297–318 (1995)CrossRefGoogle Scholar
  17. 17.
    Bazin, P.L., Ellingsen, L., Pham, D.: Digital homeomorphisms in deformable registration. In: Proc. Int. Conf. Information Processing in Medical Imaging, Kerkrade (2007)Google Scholar
  18. 18.
    Li, H., Yezzi, A., Cohen, L.: 3d brain segmentation using dual-front active contours with optional user interaction. Int. J. Biomedical Imaging, 1–17 (2006)Google Scholar
  19. 19.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. Medical Imaging 17(3) (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pierre-Louis Bazin
    • 1
  • Dzung L. Pham
    • 1
  1. 1.Johns Hopkins University, BaltimoreUSA

Personalised recommendations