Advertisement

Automated Performance Analysis Using ASL Performance Properties

  • Karl Fürlinger
  • Michael Gerndt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4699)

Abstract

We present our approach for automating the performance analysis of parallel applications based on the idea of ASL performance properties. Our tool Periscopeautomatically searches for inefficiencies specified as ASL properties, leveraging a set of agents distributed over the target machine and arranged in a tree-like hierarchy. Decomposing the analysis using a set of agents allows the analysis process to be performed in a scalable way. If the machine or target application scales in number of nodes or processors used, Periscope similarly scales in number of agents employed.

Keywords

Performance Property Target Application Parallel Loop Startup Process Command Line Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buck, B., Hollingsworth, J.K.: An API for runtime code patching. The International Journal of High Performance Computing Applications 14(4), 317–329 (2000)CrossRefGoogle Scholar
  2. 2.
    Fürlinger, K., Gerndt, M.: Performance analysis of shared-memory parallel applications using performance properties. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 595–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Huston, S.D., Johnson, J.C.E, Syyid, U.: The ACE Programmer’s Guide. Pearson Education (2003)Google Scholar
  4. 4.
    Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measurement tool. IEEE Computer 28(11), 37–46 (1995)Google Scholar
  5. 5.
    Morajko, A., Cèsar, E., Margalef, T., Sorribes, J., Luque, E.: Dynamic performance tuning environment. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 36–45. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Morajko, A., Morajko, O., Jorba, J., Margalef, T.: Automatic performance analysis and dynamic tuning of distributed applications. Parallel Processing Letters 13(2), 169–187 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Roth, P.C., Miller, B.P.: The distributed performance consultant and the sub-graph folding algorithm: On-line automated performance diagnosis on thousands of processes. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2006), March 2005 (Accepted for Publication)Google Scholar
  8. 8.
    Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications. In: Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2003), pp. 13–22. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Karl Fürlinger
    • 1
  • Michael Gerndt
    • 1
  1. 1.Institut für Informatik, Lehrstuhl für Rechnertechnik und Rechnerorganisation, Technische Universität München, Boltzmannstr. 3, DE-85748 GarchingGermany

Personalised recommendations