Sparse Matrix Algebra for Quantum Modeling of Large Systems

  • Emanuel H. Rubensson
  • Elias Rudberg
  • Paweł Sałek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4699)

Abstract

Matrices appearing in Hartree–Fock or density functional theory coming from discretization with help of atom–centered local basis sets become sparse when the separation between atoms exceeds some system–dependent threshold value. Efficient implementation of sparse matrix algebra is therefore essential in large–scale quantum calculations. We describe a unique combination of algorithms and data representation that provides high performance and strict error control in blocked sparse matrix algebra. This has applications to matrix–matrix multiplication, the Trace–Correcting Purification algorithm and the entire self–consistent field calculation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kittel, C.: 8. In: Introduction to Solid State Physics, 7th edn., John Wiley&Sons Inc., Chichester (1996)Google Scholar
  2. 2.
    Schrödinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)CrossRefGoogle Scholar
  3. 3.
    Schrödinger, E.: The present situation in quantum mechanics: a translation of Schrödinger’s ”cat paradox”. Proc. Am. Phil. Soc. 124, 323 (1980)Google Scholar
  4. 4.
    See, e.g., Cramer, C.J.: Essentials of computational chemistry, 2nd edn. Wiley, Chichester (2004)Google Scholar
  5. 5.
    Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085 (1999)CrossRefGoogle Scholar
  6. 6.
    Challacombe, M.: A simplified density matrix minimization for linear scaling self–consistent field theory. J. Chem. Phys. 110, 2332 (1999)CrossRefGoogle Scholar
  7. 7.
    Shao, Y., Saravanan, C., Head–Gordon, M., White, C.A.: Curvy steps for density matrix–based energy minimization: Application to large–scale self–consistent–field calculations. J. Chem. Phys. 118, 6144 (2003)CrossRefGoogle Scholar
  8. 8.
    Palser, A.H.R., Manolopoulos, D.E.: Canonical purification of the density matrix in electronic structure theory. Phys. Rev. B 58, 12704 (1998)CrossRefGoogle Scholar
  9. 9.
    Niklasson, A.M.N.: Expansion algorithm for the density matrix. Phys. Rev. B 66, 155115 (2002)CrossRefGoogle Scholar
  10. 10.
    Niklasson, A.M.N., Tymczak, C.J., Challacombe, M.: Trace resetting density matrix purification in O(N) self–consistent–field theory. J. Chem. Phys. 118, 8611 (2003)CrossRefGoogle Scholar
  11. 11.
    Mazziotti, D.A.: Towards idempotent reduced density matrices via particle–hole duality: McWeeny’s purification and beyond. Phys. Rev. E 68, 66701 (2003)CrossRefGoogle Scholar
  12. 12.
    Holas, A.: Transforms for idempotency purification of density matrices in linear–scaling electronic–structure calculations. Chem. Phys. Lett. 340, 552 (2001)CrossRefGoogle Scholar
  13. 13.
    Millam, J.M., Scuseria, G.E.: Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations. J. Chem. Phys. 106, 5569 (1997)CrossRefGoogle Scholar
  14. 14.
    Demmel, J.W.: Applied Numerical Linear Algebra, SIAM, Philadelphia (1997)Google Scholar
  15. 15.
    Rubensson, E.H., Sałek, P.: Systematic sparse matrix error control for linear scaling electronic structure calculations. J. Comp. Chem. 26, 1628–1637 (2005)CrossRefGoogle Scholar
  16. 16.
    Maslen, P.E., Ochsenfeld, C., White, C.A., Lee, M.S., Head–Gordon, M.: Locality and Sparsity of Ab Initio One–Particle Density Matrices and Localized Orbitals. J. Phys. Chem. A 102, 2215 (1998)CrossRefGoogle Scholar
  17. 17.
    Gustavsson, F.G.: Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition. ACM Trans. Math. Softw. 4, 250 (1978)CrossRefGoogle Scholar
  18. 18.
    Saravanan, C., Shao, Y., Baer, R., Ross, P.N., Head–Gordon, M.: Sparse matrix multiplications for linear scaling electronic structure calculations in an atom–centered basis set using multiatom blocks. J. Comp. Chem. 24, 618 (2003)CrossRefGoogle Scholar
  19. 19.
    Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide, release 2.0 SIAM, Philadelphia (1994)Google Scholar
  20. 20.
    Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in supporting persistently optimized BLAS. Softw. Pract. Exper. 35, 101 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, X.-P., Nunes, R.W., Vanderbilt, D.: Density–matrix electronic–structure method with linear system–size scaling. Phys. Rev. B 47, 10891 (1993)CrossRefGoogle Scholar
  22. 22.
    Challacombe, M.: A general parallel sparse–blocked matrix multiply for linear scaling SCF theory. Comp. Phys. Comm. 128, 93 (2000)MATHCrossRefGoogle Scholar
  23. 23.
    Elmroth, E., Gustavson, F., Jonsson, I., Kågström, B.: Recursive blocked algorithms and hybrid data structures for dense matrix library software. SIAM Rev. 46, 3 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Emanuel H. Rubensson
    • 1
    • 2
  • Elias Rudberg
    • 1
    • 3
  • Paweł Sałek
    • 1
  1. 1.Department of Theoretical Chemistry, Royal Institute of Technology, SE-10691 StockholmSweden
  2. 2.Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense MDenmark
  3. 3.Department of Chemistry, University of Warwick, Coventry CV4 7ALUK

Personalised recommendations