Advertisement

Asymptotic Behavior of Riemann Problem with Structure for Hyperbolic Dissipative Systems

  • A. Mentrelli
  • T. Ruggeri
Conference paper

We test for a 2 × 2 hyperbolic dissipative system, by numerical experiments, the conjecture according to which the solutions of Riemann problem and Riemann problem with structure converge, for large time, to a combination of shock structures (with or without subshocks) and rarefactions of the equilibrium subsystem.

Keywords

Asymptotic Solution Riemann Problem Shock Structure Nonlinear Wave Propagation Discrete Boltzmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BHN05.
    Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. IAC Report, 79 (2005)Google Scholar
  2. Boi74.
    Boillat, G.: Sur l’existence et la recherche d’quations de conservation supplmentaires pour les systmes hyperboliques. C.R. Acad. Sc. Paris 278A (1974)Google Scholar
  3. Boi96.
    Boillat, G.: Non linear hyperbolic fields and waves. In: Ruggeri, T. (ed) Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics, 1640, 1–47, Springer-Verlag (1996)Google Scholar
  4. BR97.
    Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions. Arch. Rat. Mech. Anal., 137, 305–320 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. BR98.
    Boillat, G., Ruggeri, T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Thermodyn., 10, 285–292 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. BR06a.
    Brini, F., Ruggeri, T.: On the Riemann problem in Extended Thermodynamics. Proceedings of the 10th Int. Conf. on Hyperbolic Problems (HYP2004); Osaka, September 13–17, 2004; Yokohama Pub. Inc., I, 319–326 (2006)Google Scholar
  7. BR06b.
    Brini, F., Ruggeri, T.: On the Riemann problem with structure in Extended Thermodynamics. Suppl. Rend. Circ. Mat. Palermo “Non Linear Hyperbolic Fields and Waves, A tribute to Guy Boillat”, Serie II, 78, 21–33 (2006)Google Scholar
  8. HN03.
    Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rat. Mech. Anal., 169, 89–117 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Kaw87.
    Kawashima, S.: Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edimburgh, 106A, 169–194 (1987)MathSciNetGoogle Scholar
  10. Liu96.
    Liu, T.-P.: Nonlinear hyperbolic-dissipative partial differential equations. In: Ruggeri, T. (ed) Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics, 1640, 103–136, Springer-Verlag (1996)Google Scholar
  11. LRR00.
    Liotta, S.F., Romano, V., Russo, G.: Central scheme for balance laws of relaxation type. SIAM J. Numer. Anal., 38, 1337–1356 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. MR98.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natual Philosophy 37, Second Edition, Springer Verlag (1998)Google Scholar
  13. MR06.
    Mentrelli, A., Ruggeri, T.: Asymptotic behavior of Riemann and Riemann with structure problems for a 2 × 2 hyperbolic dissipative system. Suppl. Rend. Circ. Mat. Palermo “Non Linear Hyperbolic Fields and Waves, A tribute to Guy Boillat”, Serie II, 78, 201–226 (2006)Google Scholar
  14. RS81.
    Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincar, 34, 65–84 (1981)zbMATHMathSciNetGoogle Scholar
  15. RS04.
    Ruggeri, T., Serre, D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quarterly of Applied Math., 62 (1), 163–179 (2004)zbMATHMathSciNetGoogle Scholar
  16. SK85.
    Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J., 14, 249–275 (1985)zbMATHMathSciNetGoogle Scholar
  17. Yon04.
    Yong, W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rat. Mech. Anal., 172 (2), 247–266 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Mentrelli
    • 1
  • T. Ruggeri
    • 2
  1. 1.Centro Interdipartimentale di Ricerca per le Applicazioni della Matematica (CIRAM)University of BolognaBolognaItaly
  2. 2.Research Centre of Applied Mathematics (CIRAM)University of BolognaBolognaItaly

Personalised recommendations