Advertisement

A Few Remarks About a Theorem by J. Rauch

  • F. Sueur
Conference paper

Keywords

Gronwall Lemma Strong Ellipticity Characteristic Boundary Layer Homogenous Dirichlet Condition Viscosity Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bardos, D. Brézis, and H. Brezis. Perturbations singulières et prolongements maximaux d’opérateurs positifs. Arch. Rational Mech. Anal., 53:69–100, 1973/74.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Olivier Guès. Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial Differential Equations, 15(5):595–645, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Olivier Guès. Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites. Ann. Inst. Fourier (Grenoble), 45(4):973–1006, 1995.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Heinz-Otto Kreiss and Jens Lorenz. Initial-boundary value problems and the Navier-Stokes equations, volume 136 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1989.zbMATHGoogle Scholar
  5. 5.
    J. Rauch. Boundary value problems as limits of problems in all space. In Séminaire Goulaouic-Schwartz (1978/1979), pages Exp. No. 3, 17. École Polytech., Palaiseau, 1979.Google Scholar
  6. 6.
    Jeffrey Rauch. Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc., 291(1):167–187, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Franck Sueur. Couches limites semilinéaires. Annales de la faculté des sciences de Toulouse, Sér. 6, 15 no. 2 (2006), p. 323–380.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Franck Sueur. A few remarks on a theorem by J. Rauch. Indiana Univ. Math. J., 54(4):1107–1143, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Franck Sueur. Couches limites: un problème inverse. Comm. Partial Differential Equations, 31(1-3):123–194, 2006.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • F. Sueur
    • 1
  1. 1.Laboratoire Jacques Louis LionsParisFrance

Personalised recommendations