Construction of a Hybrid HIBE Protocol Secure Against Adaptive Attacks

(Without Random Oracle)
  • Palash Sarkar
  • Sanjit Chatterjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4784)


We describe a hybrid hierarchical identity based encryption (HIBE) protocol which is secure in the full model without using the random oracle heuristic and whose security is based on the computational hardness of the decisional bilinear Diffie-Hellman (DBDH) problem. The new protocol is obtained by augmenting a previous construction of a HIBE protocol which is secure against chosen plaintext attacks (CPA-secure). The technique for answering decryption queries in the proof is based on earlier work by Boyen-Mei-Waters. Ciphertext validity testing is done indirectly through a symmetric authentication algorithm in a manner similar to the Kurosawa-Desmedt public key encryption protocol. Additionally, we perform symmetric encryption and authentication by a single authenticated encryption algorithm. A net result of all these is that our construction improves upon previously known constructions in the same setting.


Random Oracle Public Parameter Cryptology ePrint Archive Decryption Oracle Choose Plaintext Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Framework for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In: Cramer [16], pp. 128–146Google Scholar
  2. 2.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Birkett, J., Dent, A.W., Neven, G., Schuldt, J.: Identity based key encapsulation with wildcards. In: Cryptology ePrint Archive, Report 2006/377 (2006),
  4. 4.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin and Camenisch [10], pp. 223–238Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In: Franklin [17], pp. 443–459Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer [16], pp. 440–456, Full version available at Cryptology ePrint Archive; Report 2005/015Google Scholar
  7. 7.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. SIAM J. of Computing 36(5), 915–942 (2006)MathSciNetGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing (Earlier version appeared in the proceedings of CRYPTO 2001). SIAM J. Comput.  32(3), 586–615 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-Based Techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conference on Computer and Communications Security, pp. 320–329. ACM Press, New York (2005)Google Scholar
  10. 10.
    Cachin, C., Camenisch, J. (eds.): EUROCRYPT 2004. LNCS, vol. 3027, pp. 2–6. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  11. 11.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin and Camenisch [10], pp. 207–222.Google Scholar
  12. 12.
    Chakraborty, D., Sarkar, P.: A General Construction of Tweakable Block Ciphers and Different Modes of Operations. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 88–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, S., Sarkar, P.: Trading Time for Space: Towards an Efficient IBE Scheme with Short(er) Public Parameters in the Standard Model. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Chatterjee, S., Sarkar, P.: HIBE with Short Public Parameters Without Random Oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–160. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  15. 15.
    Chatterjee, S., Sarkar, P.: New Constructions of Constant Size Ciphertext HIBE Without Random Oracle. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 310–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  17. 17.
    Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152, pp. 15–19. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  18. 18.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) Algorithmic Number Theory. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 92–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Kiltz, E.: Chosen-ciphertext secure identity-based encryption in the standard model with short ciphertexts. In: Cryptology ePrint Archive, Report 2006/122 (2006),
  24. 24.
    Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006), full version available at CrossRefGoogle Scholar
  25. 25.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin [17], pp. 426–442Google Scholar
  26. 26.
    Naccache, D.: Secure and Practical Identity-Based Encryption. Cryptology ePrint Archive, Report 2005/369 (2005)
  27. 27.
    Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Sarkar, P., Chatterjee, S.: Construction of a hybrid hierarchical identity based encryption protocol secure against adaptive attacks (without random oracle). Cryptology ePrint Archive, Report 2006/362 (2006),
  29. 29.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  30. 30.
    Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1), (December 20, 2001), available from
  31. 31.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer [16], pp. 114–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Palash Sarkar
    • 1
  • Sanjit Chatterjee
    • 1
  1. 1.Applied Statistics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108India

Personalised recommendations