Advertisement

Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox

  • Jan Oliver Wallgrün
  • Lutz Frommberger
  • Diedrich Wolter
  • Frank Dylla
  • Christian Freksa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4387)

Abstract

A multitude of calculi for qualitative spatial reasoning (QSR) have been proposed during the last two decades. The number of practical applications that make use of QSR techniques is, however, comparatively small. One reason for this may be seen in the difficulty for people from outside the field to incorporate the required reasoning techniques into their software. Sometimes, proposed calculi are only partially specified and implementations are rarely available. With the SparQ toolbox presented in this text, we seek to improve this situation by making common calculi and standard reasoning techniques accessible in a way that allows for easy integration into applications. We hope to turn this into a community effort and encourage researchers to incorporate their calculi into SparQ. This text is intended to present SparQ to potential users and contributors and to provide an overview on its features and utilization.

Keywords

Constraint Satisfaction Problem Spatial Cognition Constraint Network Local Consistency Constraint Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM, 832–843 (1983)Google Scholar
  3. 3.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992), pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  4. 4.
    Egenhofer, M.J.: A formal definition of binary topological relationships. In: 3rd International Conference on Foundations of Data Organization and Algorithms, pp. 457–472. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  5. 5.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. Artificial Intelligence 108(1-2), 69–123 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-temporal reasoning in geographic space, pp. 162–178. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  7. 7.
    Frank, A.: Qualitative spatial reasoning about cardinal directions. In: Proceedings of the American Congress on Surveying and Mapping ACSM-ASPRS, Baltimore, Maryland, USA, pp. 148–167 (1991)Google Scholar
  8. 8.
    Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9, 23–44 (1998)CrossRefGoogle Scholar
  9. 9.
    Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 54–68. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 385–400. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Proceedings of the Workshop on Agents in Real-Time and Dynamic Environments (IJCAI 2005) (2005)Google Scholar
  12. 12.
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. [34]Google Scholar
  13. 13.
    Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), IOS Press, Berlin, Germany (2000)Google Scholar
  15. 15.
    Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. [35], pp. 304–322Google Scholar
  16. 16.
    Billen, R., Clementini, E.: A model for ternary projective relations between regions. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 310–328. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Goyal, R.K., Egenhofer, M.J.: Consistent queries over cardinal directions across different levels of detail. In: Tjoa, A.M., Wagner, R., Al-Zobaidie, A. (eds.) Proceedings of the 11th International Workshop on Database and Expert System Applications, Greenwich, pp. 867–880. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  18. 18.
    Sharma, J.: Integrated Spatial Reasoning in Geographic Information Systems: Combining Topology and Direction. PhD thesis, University of Maine (1996)Google Scholar
  19. 19.
    Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artificial Intelligence 137, 1–42 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Condotta, J.F., Ligozat, G., Saade, M.: A generic toolkit for n-ary qualitative temporal and spatial calculi. In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning (TIME 2006), Budapest, Hungary (2006)Google Scholar
  21. 21.
    Wölfl, S., Mossakowski, T.: CASL specifications of qualitative calculi. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Röhrig, R.: Representation and processing of qualitative orientation knowledge. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997: Advances in Artificial Intelligence. LNCS, vol. 1303, pp. 219–230. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6, 49–58 (1996)CrossRefGoogle Scholar
  24. 24.
    Scivos, A., Nebel, B.: Double-crossing: Decidability and computational complexity of a qualitative calculus for navigation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, Springer, Heidelberg (2001)Google Scholar
  25. 25.
    Ladkin, P., Reinefeld, A.: Effective solution of qualitative constraint problems. Artificial Intelligence 57, 105–124 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelligence 58(1-3), 297–321 (1992)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework [34]Google Scholar
  29. 29.
    Scivos, A., Nebel, B.: The finest of its class: The practical natural point-based ternary calculus \(\mathcal{LR}\) for qualitative spatial reasoning [35], pp. 283–303Google Scholar
  30. 30.
    Wallgrün, J.O., Frommberger, L., Dylla, F., Wolter, D.: SparQ user manual v0.6. Technical Report 007-07/2006, SFB/TR 8 Spatial Cognition; Universität Bremen (2006)Google Scholar
  31. 31.
    Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial reasoning about relative position. In: Workshop on Spatial and Temporal Reasoning at ECAI 2004, Valencia, Spain (2004)Google Scholar
  32. 32.
    Röhrig, R.: Repräsentation und Verarbeitung von qualitativem Orientierungswissen. PhD thesis, University of Hamburg (1998)Google Scholar
  33. 33.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 1(54), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.): PRICAI 2004. LNCS (LNAI), vol. 3157. Springer, Heidelberg (2004)MATHGoogle Scholar
  35. 35.
    Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.): Spatial Cognition IV. LNCS (LNAI), vol. 3343. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jan Oliver Wallgrün
    • 1
  • Lutz Frommberger
    • 1
  • Diedrich Wolter
    • 1
  • Frank Dylla
    • 1
  • Christian Freksa
    • 1
  1. 1.SFB/TR 8 Spatial Cognition, Universität Bremen, Bibliothekstr. 1, 28359 BremenGermany

Personalised recommendations