The bounded synthesis problem is to construct an implementation that satisfies a given temporal specification and a given bound on the number of states. We present a solution to the bounded synthesis problem for linear-time temporal logic (LTL), based on a novel emptiness-preserving translation from LTL to safety tree automata. For distributed architectures, where standard unbounded synthesis is in general undecidable, we show that bounded synthesis can be reduced to a SAT problem. As a result, we obtain an effective algorithm for the bounded synthesis from LTL specifications in arbitrary architectures. By iteratively increasing the bound, our construction can also be used as a semi-decision procedure for the unbounded synthesis problem.


Transition System Constraint System Synthesis Problem Tree Automaton Nondeterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. FOCS, pp. 746–757. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  2. 2.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, pp. 321–330. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  3. 3.
    Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Science, Rehovot, Israel (1992)Google Scholar
  4. 4.
    Copty, F., Fix, L., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.: Benefits of bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003)Google Scholar
  6. 6.
    Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) Problem: A survey. In: Du, D.Z., Gu, J., Pardalos, P. (eds.) Satisfiability Problem: Theory and applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 19–152. American Mathematical Society (1997)Google Scholar
  7. 7.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001. Proceedings of the 38th Design Automation Conference (2001)Google Scholar
  8. 8.
    Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS, pp. 389–398. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  9. 9.
    Walukiewicz, I., Mohalik, S.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 396–407. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing distributed transition systems from global specification. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, Pittsburgh, pp. 531–540 (2005)Google Scholar
  13. 13.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Proc. LICS, pp. 255–264. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sven Schewe
    • 1
  • Bernd Finkbeiner
    • 1
  1. 1.Universität des Saarlandes, 66123 SaarbrückenGermany

Personalised recommendations