Exact State Set Representations in the Verification of Linear Hybrid Systems with Large Discrete State Space

  • Werner Damm
  • Stefan Disch
  • Hardi Hungar
  • Swen Jacobs
  • Jun Pang
  • Florian Pigorsch
  • Christoph Scholl
  • Uwe Waldmann
  • Boris Wirtz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4762)


We propose algorithms significantly extending the limits for maintaining exact representations in the verification of linear hybrid systems with large discrete state spaces. We use AND-Inverter Graphs (AIGs) extended with linear constraints (LinAIGs) as symbolic representation of the hybrid state space, and show how methods for maintaining compactness of AIGs can be lifted to support model-checking of linear hybrid systems with large discrete state spaces. This builds on a novel approach for eliminating sets of redundant constraints in such rich hybrid state representations by a suitable exploitation of the capabilities of SMT solvers, which is of independent value beyond the application context studied in this paper. We used a benchmark derived from an Airbus flap control system (containing 220 discrete states) to demonstrate the relevance of the approach.


Model Check Boolean Function Linear Constraint Discrete Transition Boolean Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-linear systems. Acta Informatica 43(7), 451–476 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of the hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Damm, W., Disch, S., Hungar, H., Pang, J., Pigorsch, F., Scholl, C., Waldmann, U., Wirtz, B.: Automatic verification of hybrid systems with large discrete state space. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 276–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. Journal of Foundations of Computer Science 18(1), 63–86 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dolzmann, A.: Algorithmic Strategies for Applicable Real Qunantifier Elimination. PhD thesis, Universität Passau (2000)Google Scholar
  10. 10.
    Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Frehse, G.: Compositional Verification of Hybrid Systems using Simulation Relations. PhD thesis, Radboud Universiteit Nijmegen (2005)Google Scholar
  12. 12.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    H3 FOMC Team. The flap controller description,
  14. 14.
    Henzinger, T.A.: The theory of hybrid automata. In: 11th IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE Press, Los Alamitos (1996)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. Software Tools for Technology Transfer 1(1–2), 110–122 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of the ACM 12, 576–583 (1969)zbMATHCrossRefGoogle Scholar
  17. 17.
    Jha, S., Brady, B., Seshia, S.: Symbolic reachability analysis of lazy linear hybrid automata. Technical report, EECS Dept. UC Berkeley (2007)Google Scholar
  18. 18.
    Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning for equivalence checking and functional property verification. IEEE Transactions on Computer-Aided Design 21(12), 1377–1394 (2002)CrossRefGoogle Scholar
  19. 19.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36(5), 450–462 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  21. 21.
    Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying representation for logic synthesis and verification. Technical report, EECS Dept. UC Berkeley (2005)Google Scholar
  22. 22.
    Paruthi, V., Kuehlmann, A.: Equivalence checking combining a structural SAT-solver, BDDs, and simulation. In: 18th IEEE Conference on Computer Design, pp. 459–464. IEEE Press, Los Alamitos (2000)Google Scholar
  23. 23.
    Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using AIGs, BDD sweeping and quantifier scheduling. In: 6th Conference on Formal Methods in Computer Aided Design, pp. 89–96. IEEE Press, Los Alamitos (2006)CrossRefGoogle Scholar
  24. 24.
    Platzer, A., Clarke, E.: The image computation problem in hybrid systems model checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. 10th Workshop on Hybrid Systems: Computation and Control. LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007)Google Scholar
  25. 25.
    Segelken, M.: Abstraction and counterexample-guided construction of ω-automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)Google Scholar
  26. 26.
    Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid dynamical system using CheckMate. In: 4th Conference on Automation of Mixed Processes (2000)Google Scholar
  27. 27.
    The VIS Group. VIS: A system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)Google Scholar
  28. 28.
    Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-structures. IEEE Transactions on Software Engineering 31(1), 38–52 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Werner Damm
    • 2
    • 3
  • Stefan Disch
    • 1
  • Hardi Hungar
    • 3
  • Swen Jacobs
    • 4
  • Jun Pang
    • 2
  • Florian Pigorsch
    • 1
  • Christoph Scholl
    • 1
  • Uwe Waldmann
    • 4
  • Boris Wirtz
    • 2
  1. 1.Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 51, 79110 FreiburgGermany
  2. 2.Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26111 OldenburgGermany
  3. 3.OFFIS e.V., Escherweg 2, 26121 OldenburgGermany
  4. 4.Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 SaarbrückenGermany

Personalised recommendations