Mechanizing the Powerset Construction for Restricted Classes of ω-Automata

  • Christian Dax
  • Jochen Eisinger
  • Felix Klaedtke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4762)


Automata over infinite words provide a powerful framework to solve various decision problems. However, the mechanized reasoning with restricted classes of automata over infinite words is often simpler and more efficient. For instance, weak deterministic Büchi automata (wdbas) can be handled algorithmically almost as efficient as deterministic automata over finite words. In this paper, we show how and when the standard powerset construction for automata over finite words can be used to determinize automata over infinite words. An instance is the class of automata that accept wdba-recognizable languages. Furthermore, we present applications of this new determinization construction. Namely, we apply it to improve the automata-based approach for the mixed first-order linear arithmetic over the reals and the integers, and we utilize it to accelerate finite state model checking. We report on experimental results for these two applications.


Model Check Acceptance Condition Linear Time Temporal Logic Linear Arithmetic State Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basin, D., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature architecture: a comparative case study. Formal Aspects of Computing 19, 63–91 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of linear arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for strongly linear hybrid systems (extended abstract). In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–178. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log.  6, 614–633 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cerná, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification, in Logic and Algebra of Specifications. In: Bauer, F., Brauer, W., Schwichtenberg, H. (eds.) NATO Advanced Science Institutes Series, pp. 143–202. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE 1999, pp. 411–420 (1999), See also
  9. 9.
    Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 67–80. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. SIAM J. Comput. 34, 1159–1175 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: 15th IFIP WG6.1 Int. Symp. on Protocol Specification, Testing and Verification. IFIP Conf. Proc. vol. 38, pp. 3–18 (1995)Google Scholar
  14. 14.
    Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of Streett automata and for communication protocol pruning. In: Scandinavian Workshop on Algorithm Theory, pp. 16–27 (1996)Google Scholar
  15. 15.
    Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2004)Google Scholar
  16. 16.
    Kamel, M., Leue, S.: Formalization and validation of the General Inter-ORB Protocol (GIOP) using PROMELA and SPIN. Int. J. Softw. Tools Technol. Transf.  2, 394–409 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput. Sci.  13, 571–586 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. Int. J. Found. Comput. Sci.  17, 869–884 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.: Freedom, weakness, and determinism: From linear-time to branching-time. In: LICS 1998, pp. 81–92 (1998)Google Scholar
  21. 21.
    Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM Trans. Comput. Log. 2, 408–429 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. J. Comput. Syst. Sci.  35, 59–71 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton University Press (1994)Google Scholar
  24. 24.
    Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3, 376–384 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Inform. Process. Lett.  79, 105–109 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theoret. Comput. Sci.  181, 93–112 (1997)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput. Sci.  32, 321–330 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bosnacki, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007), Google Scholar
  29. 29.
    Sebastiani, R., Tonetta, S.: More deterministic” vs. “smaller” Büchi automata for efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)Google Scholar
  31. 31.
    Thomas, W.: Automata over infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. ch. 4, vol. B, pp. 133–192. Elsevier, Amsterdam (1990)Google Scholar
  32. 32.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 322–331 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Dax
    • 1
  • Jochen Eisinger
    • 2
  • Felix Klaedtke
    • 1
  1. 1.ETH ZurichSwitzerland
  2. 2.Albert-Ludwigs-Universität FreiburgGermany

Personalised recommendations