Timed Control with Observation Based and Stuttering Invariant Strategies

  • Franck Cassez
  • Alexandre David
  • Kim G. Larsen
  • Didier Lime
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4762)


In this paper we consider the problem of controller synthesis for timed games under imperfect information. Novel to our approach is the requirements to strategies: they should be based on a finite collection of observations and must be stuttering invariant in the sense that repeated identical observations will not change the strategy. We provide a constructive transformation to equivalent finite games with perfect information, giving decidability as well as allowing for an efficient on-the-fly forward algorithm. We report on application of an initial experimental implementation.


Perfect Information Imperfect Information Invariant Strategy Winning Strategy Choice Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: Proc. 2nd Work. on Real-Time Tools (RT-TOOLS 2002), Proc. published as Technical Report 2002-025, Uppsala University, Sweden (2002)Google Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asarin, E., Maler, O.: As Soon as Possible: Time Optimal Control for Timed Automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller Synthesis for Timed Automata. In: Proc. IFAC Symp. on System Structure & Control, pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  5. 5.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: Uppaal-tiga: Time for playing games! In: Damm, W., Herrmanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  8. 8.
    Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In: Sifakis, J. (ed.) Workshop on Automatic Verification Methods for Finite-State Systems. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of real-time systems. In: Budkowski, S., Cavalli, A.R., Najm, E. (eds.) Proc. of IFIP TC6 WG6.1 Joint Int. Conf. FORTE’XI and PSTV’XVIII. IFIP Conf. Proc, vol. 135, pp. 439–456. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  13. 13.
    Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic - and back. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Larsen, K., Pettersson, P., Yi, W.: Model-checking for real-time systems. Fundamentals of Computation Theory, 62–88 (1995)Google Scholar
  15. 15.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Tripakis, S., Altisen, K.: On-the-Fly Controller Synthesis for Discrete and Timed Systems. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 233–252. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Wulf, M.D., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Franck Cassez
    • 1
  • Alexandre David
    • 2
  • Kim G. Larsen
    • 2
  • Didier Lime
    • 1
  • Jean-François Raskin
    • 3
  1. 1.IRCCyN, CNRS, NantesFrance
  2. 2.CISS, CS, Aalborg UniversityDenmark
  3. 3.Computer Science Department, Université Libre de Bruxelles (U.L.B.)Belgium

Personalised recommendations